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L1 WHAT IS LIGHT ?

OBJECTIVES 
Aims
This chapter is essentially an introduction to the wave theory of light.  At this stage you should get a
basic understanding of the wave model of light, which involves the idea of light as a complex
superposition of many component waves, or elementary waves, each with its own wavelength,
frequency, amplitude and phase.  You should be able to explain these ideas to yourself and to others.
Minimum learning goals
1. Explain, interpret and use the terms:

wave, elementary wave, wavelength, frequency, period, wave speed, speed of light, refractive
index, amplitude of a wave, irradiance, intensity, monochromatic light, spectrum, continuous
spectrum, line spectrum.

2. Describe the basic features of the wave model of light.
3. State and apply the relation among wavelength, frequency and speed of a wave.
4. State and use typical values for the wavelengths in vacuum of the components of visible light

and for the speed of light in vacuum.
5. Explain the distinction between coherent and incoherent sources and waves.
6. Name the parts of the electromagnetic spectrum and arrange them in order of wavelength or

frequency.
7. State and apply the inverse square law for light intensities.

PRE-LECTURE 
1-1 INTRODUCTION
There was an ancient belief, which is regularly reinvented by children, that you see something by
sending out some kind of probe from your eyes.  A more scientific view is that we see things
because light comes from them to our eyes.  But only a few things generate their own light.  Before
the middle of the nineteenth century, practically all light  came from a few kinds of luminous object -
the sun, the stars and fires.   So those were the only objects that could be seen by their own light.  
To see other things we need a luminous object as a source of light.  Light travels from the luminous
source to the object and then to our eyes.  In the process the character of the light may be changed.
Some of the so called "white light" from the sun bounces off grass to become "green" light.

Somehow light must also carry information about the location and shape of the objects that we
see.  We  normally assume that a  thing is located in the direction where the light comes from.  So it
would seem that when it is not actually bouncing off something light must travel in more or less
straight lines.  This idea that light travels through space along straight lines, although not strictly
correct, is the basis of the very useful ray model of light, which explains a great deal about how we
see things.  The elements of the ray theory, called geometrical optics, will be explored in chapters
L2 and L3.

Until the work of Huygens in the late seventeenth century the accepted idea of the nature of
light was that it consisted of a flow of invisible corpuscles, like a stream of minute bullets.  All the
familiar optical phenomena, such as straight line propagation, reflection and refraction could be
explained by that corpuscular hypothesis.  Although Huygens showed (around 1678) that these
phenomena could also be explained by a wave theory, it was the crucial experiments in the nineteenth
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century by Young and Fresnel on the interference of light which provided convincing evidence that a
wave model of light was necessary.  Young measured the wavelength of light and its very small value
explained why many of the wave properties were so difficult to investigate.

Even after the work of Young not everyone was convinced; it was still possible to explain most
of the behaviour of light using the corpuscular idea.  Then Foucault found that the speed of light in
water was less than its speed in air.  On the other hand, the corpuscular theory could explain the
bending of a light beam only by supposing that its speed had to be greater in water.  So that was the
end of the classical corpuscular theory.  

A quite different particle theory of light came with quantum theory in the early part of the
twentieth century.  The current view is that some questions can be answered using a wave model and
others can be understood in terms of particles called photons, but the two pictures are never used
simultaneously.  In this book we need to use only the wave model, while the modern particle model
will be used in the Atoms and Nuclei unit.
1-2 WAVES
Many kinds of wave carry energy.  For mechanical waves which travel in a material medium, such as
sound waves, water waves and earthquakes, the energy is mechanical energy - kinetic energy plus
potential energy.  The potential energy is associated with the forces between particles and their
displacements from their equilibrium positions, while the kinetic energy is associated with their
movement.  The wave energy is propagated through the continual interchange between potential and
kinetic energy as the medium oscillates.  Electromagnetic waves, on the other hand, can travel
through empty space so there is no material medium involved - the energy oscillates between the
electric and magnetic fields.  Whatever the kind of wave, there are always at least two physical
variables associated with its propagation.   In the case of sound waves these variables might be the
velocity and displacement of particles and in the case of light they are the electric and magnetic
fields.

In a material medium sound waves and other kinds of mechanical waves consist of
disturbances in some property of the medium.  These disturbances move through the medium but
the medium itself does not move along with the wave.  For example, in mechanical waves (waves on
a string, water waves, sound waves) small sections of the medium (the string, the water, the air)
vibrate to and fro, but there is no net flow of material from one end of the medium to the other.  For
example a wave on a string might look like figure 1.1; the string oscillates up and down and energy
flows along with the wave but there is no movement of matter along the string.

 Direction of propagation

 Wavelength

 Oscillation

Figure 1.1.  A transverse wave on a string
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A complete description of an ordinary beam of light using the wave model would be
immensely complex.  Even water waves on the surface of the sea can be very intricate.  But it is not
necessary to go into detail about that complexity if all you want to do is understand the underlying
principles of wave motion and behaviour.  The mathematical theory of waves includes the very useful
principle that any complex wave at all can be represented as the sum, or superposition, of simple
harmonic waves; so all the fundamental properties of waves are expressed in terms of the behaviour
of simple harmonic waves.  Figure 1.2 shows an example of a relatively uncomplex wave which can
be analysed as a combination of only four elementary waves.
Elementary waves
The simplest kind of wave to describe mathematically is a simple harmonic wave that travels in one
direction.  The wave property (electric field, pressure or whatever it is that does the waving) is
represented here by W  and varies with position x in space and with time t.  The wave can be
described by the equation:

W = A sin(kx  -  ωt  + φ) ... (1.1)
in which A, k, ω and φ are constants.   Their significance is discussed below.   

This equation tells us several things about the wave.  The expression in parentheses,
(kx  -  ωt  + φ), which is called the phase of the wave, tells what stage the oscillation has reached at
any point x  and time t.  The quantity φ is called the initial phase.  We can get a kind of snapshot of
the wave by making graphs of W plotted against x for particular values of the time t  (figure 1.3).
The graphs show the familiar sine-curve shape of the wave.  The constant A is called the amplitude
of the wave and the value of the wave property varies between -A and +A.   As time progresses the
wave moves forward, but its shape is the same.

 Wave
property

 Position

 Components of
the wave

 A wave pattern

Figure 1.2.   Analysis of a wave in terms of elementary sine waves
The complex wave is plotted in the top diagram and the mixture of its four components is shown below.
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 t = 0

 t =T/3

 t = 2T/3 

 Position, x

 Wave
property,

W

λ 

 t = T

λ 

 Motion

Figure 1.3.  Progress of a simple wave
The whole wave pattern moves to the right.  In one period (T) it moves one wavelength (λ).

The equation (1.1) and the graphs (figure 1.3) both show that the pattern of the wave is
repeated exactly once every time that the position coordinate x increases by a certain amount
λ, which is called the wavelength.   The constant k  in equation (1.1) is called the propagation
constant or the wave number.  It is inversely related to the wavelength:

λ =  
2π
k  .

By looking at what happens at a fixed point (x) as the wave goes past, we can see that the
variation of the wave property with time is also described by a sine function:  the variation of W is a
simple harmonic oscillation (figure 1.4).  

 Wave
property,

W

 T

 Time

Figure  1.4.  The wave oscillation at a fixed location
Although W is now plotted against time, the shape of the graph is just like the shape of the wave shown in

figure 1.3 .
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The constant ω in the equation is the angular frequency of the oscillation and the wave.  The
wave's period T and its frequency f are given by the relations:

T =  
2π
ω      =  

1
f    . ... (1.2)

By studying the graphs in figure 1.3 you should be able to satisfy yourself that the wave
moves forward by one wavelength in one period, so the wave speed must  be equal to λ/T or f λ:

v = f λ . ... (1.3)
Note that the wave equation quoted above describes the progression of an idealised wave in a

one-dimensional space.  The main differences for real waves in three-dimensional space are that the
amplitude A generally decreases as the wave moves further away from its source and that we need
some way of describing how the waves spread out as they go.  

 LECTURE

1-3 LIGHT WAVES
In the wave model light is viewed as electromagnetic waves.  Since these waves consist of oscillating
electric and magnetic fields which can exist in empty space, light can travel through a vacuum.   

Since light can be analysed as a complex mixture of a huge number of individual
electromagnetic waves, the important properties of light and other electromagnetic waves can
therefore be understood in terms of the properties of these simple elementary waves.

 At any point on the path of a simple harmonic light wave the strengths of the electric and
magnetic fields are continually changing.  At each point the two fields always change in step, so that
the maximum value of the electric field occurs at the same time as the maximum magnetic field.  The
electric and magnetic fields point in directions at right angles to each other and also at right angles to
the direction in which the wave travels.  Since a complete knowledge of the electric field determines
the magnetic field, the wave can be described adequately by specifying the electric field only.

Figure 1.5 is an instantaneous representation of the fields in part of an elementary
electromagnetic wave.  Notice that the electric and magnetic fields are in phase, their maxima occur at
the same place at the same time.   Since both fields are perpendicular to the direction of travel of the
wave, the wave is said to be transverse.  (A wave in which the direction of the wave property is
parallel to the direction of travel is called a longitudinal wave.)

Direction
of travel

Electric field

Magnetic field
λ 

Figure 1.5.  Instantaneous plot of part of a simple electromagnetic wave
The direction of each field is shown by the direction of the arrow and its magnitude is represented by the length

of the arrow.
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Wavelength and frequency
An important property of electromagnetic waves is that in empty space they all travel at exactly the
same speed of about 300 000 kilometres per second (2.997 924 58 × 108 m.s-1 to be more precise)
quite independently of their wavelength and frequency.

The quantities which characterise each elementary wave are its amplitude, its frequency and its
wavelength.   Amplitude and frequency are difficult or impossible to measure directly but there are
several kinds of experiment which can be used to measure wavelength.  Experiments have yielded
values for the wavelengths of visible light which lie roughly in the range, 400 nm to 700 nm.  The
usual unit for light wavelengths, which is consistent with SI, is the nanometre; 1 nm = 1 × 10-9 m.
(In older literature you may find reference to two obsolete units. The angstrom, symbol Å,  is 10 nm
and the micron is equivalent to the micrometre, µm.)  

Since the speed of light in vacuum is fixed, each wavelength corresponds to a different
frequency.  The range of frequencies for visible light is from about 7 × 1014 Hz (at 400 nm
wavelength) to about 4 × 1014 Hz (at 700 nm).  When the wave theory of light is extended to take
account of light's interaction with matter, it turns out that when an elementary light wave goes from
one material into another its frequency is unchanged but the speed and the wavelength are altered.
So the property which really distinguishes each elementary wave is its frequency, rather than its
wavelength.  The common practice of describing light in terms of  wavelengths is related to the fact
that wavelengths can be measured reasonably directly but frequencies are to hard to measure.  Since
wavelength changes what does it mean to quote values for wavelength?   The answer is that
unqualified references to wavelength are understood to mean wavelength in vacuum, or possibly air.
(Fortunately wavelengths of the same wave in air and vacuum are almost equal.)

Light which contains a relatively narrow range of wavelengths looks coloured.  The colours
correspond to those in the rainbow, ranging from violet (upwards of 400 nm) through blue, green
(around 550 nm) and yellow, to red (up to about 700 nm).  Normal sunlight, which contains the
whole range, is usually described as white light.
Speed of light and refractive index
The speed of light in a transparent material is always less than the speed, c, in vacuum.   The ratio of
the speed in a vacuum to the speed in the medium is called the refractive index (n) of the medium.

n =
c
v    . ... (1.4)

Medium Speed
v

108  m.s-1 
for λ = 589.3 nm

Refractive index
n  = 

c
v 

for λ = 589.3 nm
Vacuum 2.998 1.0000

Air 2.997 1.0003
Water 2.249 1.333
Glass 1.972 1.520

Diamond 1.239 2.419

When any elementary electromagnetic wave, including light, passes from one medium into
another, its frequency remains the same.   This can be explained in terms of the interaction between
the radiation and the electrons in the material.  The electromagnetic waves actually interact with the
atoms or unbound electrons which then re-radiate the energy, forming a new wave at the same
frequency.
Polarisation
Have another look at figure 1.5 and notice that the directions of the electric fields are all parallel or
anti-parallel;  they all lie in the same plane.  Hence the wave is said to be plane polarised or
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linearly polarised.  (Similarly, note that the magnetic field vectors all lie in a common plane, which
is perpendicular to the plane of the electric field.)

In ordinary light, which is a complex mixture of elementary waves, the only restriction on the
plane of vibration of the electric field is that it should be at right angles to the direction of travel of
the light wave.  Otherwise it can have any orientation.  Consider radiation from an ordinary light
globe.  The total electric field at a particular place (due to the radiation from all parts of the filament)
changes direction quite randomly but always stays perpendicular to the direction of travel of the light
wave.  Light waves which behave like this are said to be randomly polarised or unpolarised
(figure 1.6).

However, if by some means the electric field is restricted to one plane only, i.e. if the individual
elementary waves all have the same polarisation, then the light beam as a whole is said to be plane
polarised or linearly polarised.

Unpolarised or
randomly
polarised

Polarised

Direction
of propagation

Electric field Electric field

Direction
of propagation

Figure 1.6.  Polarised and unpolarised light

1-4 DETECTING LIGHT
Light detectors respond in many different ways.  For example light entering a light meter produces
an electric current which deflects the pointer of the meter.  And light interacting with a photographic
plate causes a chemical change in the emulsion which gives a permanent record of the incident light
pattern.

Most kinds of continuously operating light detectors respond to the rate at which the light's
energy is absorbed by the detector; they indicate the power.  How is this response related to the
electric field of the light waves?  No detector can respond to the instantaneous value of the field
because the field changes far too rapidly, so the response must be to some kind of average of the
field over time.  A detector which responded simply to the time-averaged value of the electric field
itself would be useless, because that average value is zero.  On the other hand most detectors
respond to the time average of the square of the field's value, i.e. to E2.   This can be related to the
rate at which waves deliver energy by recalling that the energy in a simple harmonic motion is
proportional to the square of its amplitude (chapter FE7).  In the case of an elementary light wave
with amplitude E0 the rate of energy transfer is proportional  E0

2, the square of the amplitude, which
is also equal to the average value of E2.  

Other factors which affect the response of a detector are its receiving area (the bigger it is the
more light it collects) and the spectral composition of the light - i.e. the distribution of the light's
power over the various wavelengths or frequencies of the light.
The eye
The human eye is sensitive to light with wavelengths between about 400 nm and 700 nm.  It is this
sensitivity that makes this part of the electromagnetic spectrum so special to us.  The eye is more
sensitive to some frequencies than to others (figure 1.7).  For example the eye is about seven times
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more sensitive to green light at  550 nm than it is to blue light at 480 nm.  So a beam of blue light
would need to be seven times as powerful as a similar green beam for the two beams to appear
equally bright.

400 500 600 700
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Figure 1.7.  Sensitivity of the eye
Irradiance
Since light carries energy we need a way of describing that.  Imagine a small flat area of space which
is perpendicular to the direction of travel of the light.  For a given light beam the power (rate of
energy transfer) passing through this small region is proportional to its area; the larger the area the
more energy it receives.  The relevant property of the light is then the power divided by the
perpendicular area; or more precisely the limiting value of that quotient as the area is made smaller.
Strictly this quantity should be called irradiance but it is commonly known as the intensity of the
light.

 For a harmonic electromagnetic wave the irradiance is proportional to the time-averaged value
of E2.
1-5 IRRADIANCE OF LIGHT FROM A NUMBER OF SOURCES
We now consider how to model the resultant irradiance when light from different sources arrives at
the same place.  The result depends on the relationship, or lack of relationship, between the phases of
the elementary waves in each complex wave.  In principle there is only one correct way of doing the
calculation:  at each instant of time find the total electric field by adding all the individual fields in
both beams, taking proper account of their many different directions.  Then the square of the total
field will be proportional to the instantaneous intensity.  In reality however, we are more interested in
values averaged over reasonable time intervals (a few milliseconds for example) rather than
instantaneous values and in such cases a simpler procedure will give accurate answers.

In most cases the irradiance of light produced at some place by several different independent
sources can be found by adding the irradiances from the individual sources.  As an example
consider two light globes.  For each globe the total light output is made up of many small
contributions from the large number of atoms in the hot lamp filament.  Each atom emits radiation in
short bursts which occur at random times; excited atoms emit light quite independently of one
another.  The light from each globe therefore consists of a complex mixture of many elementary
waves with different frequencies, phases and polarisations. Although both light beams contain much
the same mixture of frequencies, the phases and polarisations of the elementary waves in the two
beams do not match up.  Even if we consider a specific frequency, the phases of the elementary
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waves from one globe are quite random, so they are not related in any way to the phases of the
elementary waves from the other globe.  The two light sources and the waves which come from them
are said to be incoherent.

For two incoherent sources A and B, the total irradiance at some place, due to both sources
together, can be found from the sum of the irradiances due to each source alone:

IT = IA  +  IB .

On the other hand, if there is a definite fixed relationship between the phases and polarisations
of the waves from the two sources this procedure gives the wrong answers.  For a somewhat
artificial example think of two pure, very long, harmonic waves with exactly the same frequency.
Suppose that we look at a place in space where these two waves meet with their polarisations parallel.
If the two waves are exactly in phase (in step) the amplitude of the total field will be the sum of the
two individual amplitudes and if they are half a cycle out of step the resultant amplitude will be the
equal to the difference in the individual amplitudes.  If they are in step the irradiance will be given by

IT ∝ E0T
2  =  (E0A + E0B)2 ,

but if they are exactly out of step the irradiance will be
IT ∝ E0T

2  =  (E0A - E0B)2

This is certainly not the same result as we would get by adding the separate irradiances that would
have been produced by each each wave in the absence of the other;  i.e.  IT  ≠ IA  +  IB.

Now think of two sources of light which emit a complex mixture of elementary waves, but this
time suppose that the mixture of light emitted by one of them is an exact copy of the collection of
elementary waves emitted by the other.  We can pair off the elementary waves and apply the
argument about adding the fields.  Once again the irradiances that the beams would have produced
individually do not add; we must add the fields and then take the appropriate time-averages if we
want to know the irradiance.   In this case the two sources and the waves from them are said to be
coherent.  There is a definite relationship between the phases of the elementary waves in the two
complex waves.

Example
Light from four identical incoherent sources arrives at the same place, having travelled the same
distance from each.   The total irradiance is the sum of the four individual irradiances:

IT = I + I +I + I   =  4 I

 P

Figure 1.8.    Irradiance due to four identical sources
The point P at which the irradiance is measured is equidistant from the sources.

If on the other hand the four identical sources are coherent and if the polarisations match up we
could get all matching components from the two sources to arrive exactly in phase, so the amplitudes
would add up and the resulting irradiance would be

IT = (E0+ E0 + E0 + E0)2   = 16 I  .
You may think that this result violates the law of conservation of energy.  That is not so,

because there are other places where the contribution to the total irradiance from the same elementary
waves is quite small.  The total energy is the same in both examples, it is just distributed differently.



L1:   What is Light? 10

The combination of coherent waves is called interference, a topic which will be discussed
further in chapter L4.
1-6 SPECTRA FROM SOURCES OF VISIBLE LIGHT
Because of the short wavelengths (about 10-7 m) and high frequencies (about 1014 Hz) of light
waves we can infer that light radiation must be emitted by something small such as the atoms and
electrons of the material that forms the source of the light wave. Quantum theory describes how
isolated atoms can radiate only at those frequencies which correspond to a particular change from
one well-defined atomic energy level to another.  The frequency of the emitted wave is given by the
formula  

f =
ΔE
h  ... (1.5)

where ΔE is the energy change and h is Planck's constant.  For more about this topic see the Atoms
and Nuclei unit.

However, in a solid the atoms are packed so closely together than there is considerable
interaction among them.  This leads to a blurring out of the energy levels into a continuous band of
energies.  A continuous spectrum of light frequencies results.  More atoms are excited as the
temperature of the material increases.  Thus a hotter object emits a greater total intensity of
electromagnetic waves.  Also, as the temperature of a body is increased, it emits a greater proportion
of its radiation at higher frequencies (shorter wavelengths).  So, as the temperature is increased, the
peak irradiance in the spectrum moves to shorter wavelengths.

3500 K 

3250 K 

3000 K 

 2750K

 Irradiance

 Wavelength,  λ  / µm
 0  1  2

Figure 1.9.  Spectra of light from a hot solid
The peak of the continuous spectrum shifts to shorter wavelengths as the temperature is increased.  The

intensity of radiation also increases with increasing temperature.
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In general, gases and vapours, in which the atoms or molecules are well separated, emit line
spectra.  Every atom or molecule has a characteristic line spectrum corresponding to its energy
level structure so the spectrum observed depends on the types and numbers of different atoms and
molecules present.

400 600 500 
Wavelength, λ  / nm 

 Irradiance

Figure 1.10.  Spectrum of light from a fluorescent tube
Note the bright spectral lines from the gas superimposed on the continuous spectrum from the fluorescent solid

coating on the inside of the tube.

A laser emits radiation in a very narrow range of wavelengths.  Such light is called
monochromatic.  

Intensity

Wavelength/nm
400 500 600 700

Figure 1.11.  The spectrum of radiation from a laser
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 POST-LECTURE

1-7 THE ELECTROMAGNETIC SPECTRUM
The spectrum of electromagnetic waves is divided up into a number of arbitrarily named sections.
The dividing lines between these sections are determined by the detailed properties of a particular
range of wavelengths.  But there is considerable overlap and the divisions are to some extent
arbitrary.
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Figure 1.12.  The spectrum of electromagnetic waves
Note the logarithmic scales.

Radio waves
Radio waves have wavelengths from about 1 m upwards.  They are produced by connecting an
electronic oscillator to an antenna.  The oscillating electrons in the antenna then lose energy in the
form of electromagnetic waves.  Radio waves  are used for radio and television broadcasting and
long-distance communications.
Microwaves
Microwaves are short radio waves with wavelengths down to about 1 mm.  They can be produced
electronically by methods analogous to the production of sound waves when you blow across the
top of a resonating cavity such as a bottle.  Because microwaves are not absorbed very strongly by
the atmosphere, but are reflected well off solid objects such as buildings and aircraft, they can be
used for radar location of distant objects.  Microwaves are also used extensively for communications
but they require direct line-of-sight paths from transmitter to receiver so that microwave stations are
located on top of hills and tall structures.
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Infrared radiation
The infrared part of the spectrum comprises wavelengths from 0.1 mm (far-infrared) down to about
700 nm.  Infrared radiation is emitted by excited molecules and hot solids. Much of the energy
released by the element of an electric oven is in the form of infrared radiation. The radiation is very
easily absorbed by most materials so the energy becomes internal energy of the absorbing body.
When you warm your hands by a fire you are absorbing infrared radiation.   
Visible light
Light is that part of the electromagnetic spectrum which we can see.  Visible light is emitted by
excited atoms and molecules and by very hot solids.
Ultraviolet radiation
Ultraviolet 'light' has wavelengths less than 400 nm.  It is emitted by excited atoms.  The 'black light'
used to produce fluorescence in light shows is ultraviolet.   Much of the ultraviolet radiation from the
sun is absorbed by the atmosphere but that which gets through can cause sunburn and skin cancers.
Ultraviolet light can also be harmful to the eyes.  The irradiance of ultraviolet light increases at high
altitudes where the atmosphere is thinner.  Part of the concern about the depletion of the
atmosphere's ozone layer is based on the fact that the ozone layer absorbs ultraviolet radiation from
the sun.  
X rays and gamma rays
The wavelengths of x rays and gamma rays overlap, but the different names indicate different ways
of producing the radiation.  X rays are produced in processes involving atoms and electrons.  For
example they can be produced by bombarding a metal target with high energy electrons.  They are
also emitted in some high-energy atomic energy level transitions.  X rays usually have wavelengths
less than 10 nm.  On the other hand the term gamma rays is reserved for electromagnetic radiation
emitted in sub-atomic processes such as the decay of excited nuclei or collisions between sub-
nuclear particles.  Gamma radiation generally has wavelengths less than 0.1 nm.  It is emitted by
excited nuclei of atoms.
1-8 THE INVERSE SQUARE LAW FOR LIGHT
Take a point source of light which is radiating uniformly in all directions and consider a sphere of
radius r centred on the source.  The total light power, P, radiated by the source must pass through
this sphere.  Irradiance of radiation is defined as the power per area, which strikes (or passes
through) a surface which is perpendicular to the direction of propagation.

Area of sphereArea of sphere
4πr 2

4π R 
2

 r 

R 

Figure 1.13.  Inverse square law for light
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In this case, since the energy is distributed uniformly over the surface of a sphere, so

I =
total power
total area    .

At distance r I =
P

4πr2    . ... (1.6)

At a larger distance R, I =
P

4πR2    ,  which is smaller.

The irradiance is inversely proportional to the square of the distance from the point source.

QUESTIONS 
Exercises
Q1 .1 Calculate the distance travelled by light in 1.0 µs.
Q1.2 A typical wavelength for visible light is 500 nm.

a) Calculate the frequency of this light.
b) Calculate the wavelength, frequency and speed of this light in a glass with refractive index 1.50.

Q1.3 Calculate the irradiance of the light coming from three identical sources all at the same distance
a) when the three sources are incoherent;
b) when the three sources are coherent and the fields have the same polarisation and phase.

Q1.4 On the large diagram of the electromagnetic spectrum mark the wavelengths of the following sources.
You may have to do some searching for the answers.
a) Radio station 2GB.
b) TV Channel 2
c) A green spectral line.
d) X rays used by a radiographer.
e) The range of wavelengths of an electric radiator as it warms up to red heat.
f) A gamma ray.

Q1.5 Suppose that a point source is radiating light waves at a rate of 10 W.  Calculate the irradiance at a distance of
20 m from the source.

Q1.6 Refer to the sensitivity curve for the eye, figure 1.7.  At what wavelength does a normal human eye have
maximum sensitivity?  At what wavelengths does it have half its maximum sensitivity?   At what
wavelengths does it have only 1% of its maximum sensitivity?

Discussion questions
Q1 .7 Give some scientific arguments against the view that we see things by sending some kind of probe out from

our eyes.
Q1.8 How could you measure the sensitivity curve for the human eye ?
Q1.9 The eye detects the visible part of the electromagnetic spectrum.  The human body is also affected by radiation

in other parts of the electromagnetic spectrum.  How?
Q 1.10 People used to do experiments to measure the speed of light.  But the metre is now defined in terms of

the speed of light.  Does this mean that those experiments are no longer useful?  Discuss.
Q1.11 Which of the following affect the speed of light in vacuum: (a) speed of the source, (b) speed of the

observer, (c) intensity of the light (d) wavelength, (e) frequency ?
Q1.12 Why does a microwave oven cook the chicken but not the plate?
Q1.13 A photographic plate and a radio set both operate as detectors of electromagnetic waves. Yet they are not

interchangeable.  Comment.



L2 REFLECTION AND REFRACTION

OBJECTIVES 
General aims
When you have finished studying this chapter you should understand the nature of reflection and
refraction of light and the simple laws which govern those processes.  You will learn how to use the
ray model for describing the behaviour of light and you should be able to apply the model to simple
examples.  Also, you will learn to describe dispersion, the process responsible for rainbows.
Minimum learning goals
1. Explain, interpret and use the terms:

wavefront, spherical wavefront, plane wavefront, ray, point source, scattering, reflection,
reflectivity, specular reflection, diffuse reflection, refraction, refractive index, Snell's law,
internal reflection, total internal reflection, critical angle, grazing incidence, dispersion,
spectrum, optical fibre, light pipe.

2. State the laws of reflection and refraction, describe examples and apply the laws to simple
examples involving plane boundaries.

3. Describe partial and total reflection.  Derive, recall and apply the relation between critical angle
and refractive indices.

4. Describe what happens to speed, frequency and wavelength when monochromatic light goes
from one medium to another.  Apply these descriptions to simple quantitative problems.

5. Describe the phenomenon of dispersion and its explanation in terms of refractive index and
the wave model of light.  Describe examples which illustrate dispersion by refraction.

6. Remember that the speed of light in air is practically equal to its speed in vacuum.
7. Describe and explain the operation of optical fibres and other examples of total internal

reflection.
Extra Goals
8. Describe and explain the formation of mirages and rainbows.

TEXT 
2-1 WAVEFRONTS AND RAYS
Imagine a wave moving outwards from a source, like the expanding ripples that appear when the
surface of a pond is disturbed by dropping a stone into it.  Those ripples constitute a wave.  All the
points on the crest of a particular ripple are at the same stage, or phase, of the wave's vibration.

t t t t 1 2 3 4

Figure 2.1.  Spherical wavefronts spreading out from a point source
A curved line, or a surface for a three dimensional wave, that connects all adjacent points that

have the same phase is called a wavefront.  For the water waves on the pond a wavefront could be
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one of the expanding circles corresponding to a particular wave crest or trough.  For sound waves
the wavefront would be a surface containing all adjacent points where the wave pressure is in step.
For light the wavefronts are surfaces connecting adjacent points where the oscillating electric fields
are in step.  Note that for any given wave we can define any number of wavefronts.  It is often useful,
however, to focus attention on a set of wavefronts separated from one another by one wavelength.

If the light comes from a point source, then the wavefronts are concentric spheres, centred on
the source and expanding away from the source at the speed of light; light from a point source has
spherical wavefronts (see figure 2.2).  At a large distance from the source the curvature of a small
section of a spherical wavefront is so small that the wavefront is nearly flat and is a good
approximation to a plane wave.
The ray model of light
If we select a small section on a wavefront and follow its progress as it moves away from the source,
the path traced out by this section is called a ray.   A ray by its nature is always an imaginary
directed line perpendicular to the wavefronts.

Point source

Close to the source
wavefronts are spherical;
rays are radial.

Far from the source
wavefronts are plane;
rays are parallel.

Ray

Ray

Ray

Wavefronts Wavefronts

Ray

Ray

Ray

Figure 2.2.  Wavefronts and rays
In very general terms rays are lines along which light travels.  The direction of a ray at a point

in space shows the direction in which the wave's energy is travelling at that place.  We can talk about
rays even without using the wave model of light.

A beam of light is like a tube; unlike a ray it has a non-zero width.  In principle we can
imagine an infinite number rays within a beam, but in practice we use only a few rays to describe the
progress of the light.  A narrow beam of light is often called a pencil.

Parallel beam Diverging beam

Figure 2.3.   Beams of light represented as bundles of rays

2-2 INTERACTIONS OF LIGHT WITH MATTER
This chapter is concerned mostly with what happens to light when it encounters the boundary
between two different materials.  Before going into details of reflection and refraction we start with
an overview of the processes that can happen.

We can represent light travelling through empty space or air using rays which continue
straight ahead until the light meets some material object.  However when light travels through a
material medium the description may not be so simple.  Some portion of the light in each beam may
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be scattered away from its original direction (figure 2.4).  This scattering is caused by the
interaction of light with small particles, even atoms or molecules, within the material. The scattered
light goes off in many different directions, and may be scattered again and again before it is finally
absorbed somewhere.  For monochromatic light the probability of scattering depends on the relative
sizes of the particle and the wavelength of the light.  So some wavelengths are more susceptible to
scattering than others.

Figure 2.4.  Scattering from a beam of light
Scattering is the basis of explanations of why the sky is blue and why the setting sun looks

reddish.  Light coming through the atmosphere from the sun is scattered by individual air molecules.
Since scattering is more likely for shorter wavelengths, some fraction of the short wavelength part of
sunlight - blue light - gets scattered out of the direct path from the sun.  Multiple scattering spreads
the scattered blue light over the whole sky.  Since some of the blue light is removed from the direct
white-light beam from the sun, the light that still comes through without scattering is somewhat
redder than it would be if there were no atmosphere.  This explanation is supported by the fact that
the sun looks redder at sunset, when the light has to traverse a greater thickness of the atmosphere,
than it does at midday.

On a smaller scale, the scattering of a small fraction of the light in a beam by dust or smoke
particles in the atmosphere can help  in tracing the path of the main beam. This effect is often used in
demonstrations which allow us to see the paths of beams of light.
Transmission and absorption of light
The main interest in this chapter is in what happens to light when it comes to the boundary between
two different materials.  Briefly, several things can happen there: some of the light may be reflected
back into the material where it came from while some of it may continue to travel through the second
medium.  You can see an example of this partial reflection when you look obliquely at a window.
You can usually see a reflected image of the scene nearby, but most of the light from outside goes in
through the window.  Light which goes through is said to be transmitted.  Transmitted light may or
may not be absorbed significantly along the way.  Window glass, for example absorbs very little
light but a brown bottle glass absorbs quite strongly.

Light penetrates some materials better than it does others.  If light penetrates without much
scattering the material is said to be transparent.  If there is a significant amount of scattering as the
light goes through, the material is translucent.  You can see things clearly through transparent
materials but not so well through translucent materials.  Materials which let no light through are said
to be opaque.  Light can be gradually absorbed even as it travels through a transparent material, so
that a thick piece of a transparent material may appear to be opaque.  Furthermore, the rate at which
light is absorbed as it travels through the material can depend on the spectral composition of the
light, i.e. on the mixture of different frequency components.  For example white light, after passing
through a slab of coloured glass, will emerge from the other side with a different mixture of
frequencies, i.e. it will have a different colour.  

When light comes from a transparent medium, or empty space, to the boundary of an opaque
material, there may be some reflection but there is no significant transmission; all the absorption
takes place in a very thin layer of material near the surface.  
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An important effect on transmitted light is that its direction of travel can change as it crosses
the boundary between materials.  This effect is called refraction and the light is said to be
refracted.  Refraction will be considered in §2-4.  

The speed of light in a material is also important.  In empty space, a vacuum, all light travels
at the same constant speed of 3.0 × 108 m.s-1, which we always denote by the symbol c.    However
when light travels through a material its speed is always less than c.  The actual value of the speed
can now depend on a number of factors such as the chemical composition and the density of the
material.  It also depends on the frequency of the light, so that normal light, which contains a
complex mixture of components with different frequencies, travels with a range of different speeds.
As you will see at various stages in this course, the dependence of speed on frequency has a number
of important consequences.  For example some parts of a flash of light can be delayed or left behind
when the light goes through a material medium.
2-3 REFLECTION
Diffuse reflection
We see objects when light from them enters our eyes.  Apart from self-luminous objects, such as the
sun, lamps, flames and television screens, all other objects are seen only because they reflect light.
Hence the apparent shape, texture and colour of objects depend upon the light which falls on them,
called the incident light, and the way it is reflected.  Even when the incident light comes mostly
from one direction, the reflecting surface can scatter the light so that it travels in many different
directions.  This scattering process, which occurs at a well-defined boundary,  is usually called
diffuse reflection.  The diagram shows what happens to a parallel beam of light when it is reflected
diffusely.  Although all the incident rays are parallel, the reflected rays go all over the place - in many
different directions.  This model explains why you can see an object in reflected light by looking at it
from many different directions - you don't have to be in a particular place to see it.

Figure 2.5  Diffuse reflection
The sketch is greatly magnified. On a microscopic scale the reflecting surface is rough,even though it may look

smooth to the naked eye.

Reflectivity
When light falls on a surface some of it is absorbed or transmitted and the rest is reflected.  The
reflectivity of the surface is defined as

reflectivity =
total intensity of reflected light
total intensity of incident light    .

In this definition the incident and reflected light are each summed over all directions.
Reflectivities range from less than 0.5% for black velvet and surfaces covered with powdered carbon
to more than 95% for freshly prepared magnesium oxide and polished silver surfaces.  White paper
has a reflectivity of about 80%.
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Colour
Colours of objects can be explained by supposing that their surfaces reflect different proportions of
the various frequency (or wavelength) components of the incident light.  Different mixes of these
components produce the different visual sensations that we call colour.

It is worth noting in passing that there is no one-to-one correspondence between frequency
and colour.  Although some narrow ranges of light frequencies produce colour sensations such as
the colours of the rainbow, red through to violet, there are many colours, such as purple and brown,
which do not correspond to any one band of frequencies.
Mirror reflection
Although most examples of reflection in nature are diffuse reflection, the special, regular, kind of
reflection exhibited by mirrors and very smooth surfaces plays an important role in the science of
optics.  This kind of reflection is called specular reflection (from the Latin, speculum, a mirror)
which can be described as reflection without scattering.  Some examples of specular reflectors are
the surfaces of many types of glass, polished metals and the undisturbed surfaces of liquids.  Some
of these, such as glass and many liquids, also transmit light, whereas light does not penetrate beyond
the surface of a metal.  The fact that light is not transmitted through metals can be explained in terms
of the interaction between the light and electrons within the metal.  An example of a metal reflector is
an ordinary mirror - a thin coating of metal is placed on the back surface of a piece of glass and
most of the reflection takes place there.  In fact the weak reflections at the front surface of the glass
are usually a nuisance.

The laws which govern specular reflection can be described most simply in terms of rays.  We
imagine some incident light, travelling in a well-defined direction, which strikes a flat reflecting
surface such as a mirror or a piece of glass.  The incident light can be represented by a bundle of
parallel rays.  The reflected light will also travel in a well-defined direction which can be represented
using another bundle of parallel rays.  Since there is no scattering, for each incident ray there is only
one reflected ray.

Figure 2.6.  Specular or mirror-like reflection
In order to describe the relation between reflected and incident rays we need to look at the

point where the incident ray meets the reflecting surface. At that point we imagine a line constructed
perpendicular to the surface, in geometrical language called the normal to the surface.  The reflected
ray also departs from the same point.  The angle between the incident ray and the normal is called
the angle of incidence and the angle between the normal and the reflected ray is called the angle of
reflection.  The behaviour of the rays in specular reflection can be described completely by two
laws, illustrated in figure 2.7.
• The incident ray, the normal and the reflected ray all lie in one plane.  
• The angle of incidence is equal to the angle of reflection.
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Incident ray
Normal

Reflected ray

Reflecting surface

φ φ

Figure 2.7.  The laws of reflection
Notes
• Since any two intersecting lines define a plane, we can draw a plane diagram, like figure 2.8
below, containing the incident ray and the normal.  The first of the two laws says that the reflected
ray will lie in the same plane, not sticking out of the page at some angle.
• Note that the amount of light reflected cannot be predicted from these laws.  That depends on
the reflectivity of the surface.
2-4 REFRACTION
We have looked at the laws which govern the paths of specularly reflected light; we now consider
what happens to the part of the light which goes into the other material.  You already know that it
could be partly absorbed, but which direction does it go?  Does it go straight ahead or in some other
direction or directions.  The answer is that if the boundary is smooth enough to be a specular
reflector, then the direction of the transmitted light is uniquely determined by the nature of the two
materials, the frequency (or the wavelength) of the light and the angle of incidence.  Furthermore, the
light does not go straight ahead; instead the rays bend at the boundary so that the light goes on in a
new direction.  The new direction is described by two laws which are almost as simple as the laws of
reflection.
• Firstly, the incident ray, the normal, and the refracted ray (as well as the reflected ray) all lie in

the same plane.  So we can draw all three rays on one plane diagram (figure 2.8).

Incident ray Reflected ray

Refracted ray

Normal

Boundary

Medium A

Medium B

φ 
A

φ 
B

φ 
A

Figure 2.8.  Refraction
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• Secondly, the direction of the refracted ray is determined by the direction of the incident ray
and the ratio of the speeds of light in the two materials:

sinφA
sinφB

 =
vA
vB

  . ... (2.1)

Note that if the light slows down when it goes into the second medium the rays will bend
towards the normal, but if it goes faster then the rays will bend away from the normal.  This
immediately points to a problem with the equation, because it seems to say that we could get a
situation where the sine of the angle of refraction, φB could have a value greater than 1 - which does
not make sense.  The proper interpretation of this is that in such a case, the refracted ray cannot
exist; i.e. that the light will not penetrate the second medium at all.  We return to this point shortly.

The law of refraction is a simple consequence of the wave theory of light.  You can see in
figure 2.9 how plane wave fronts must change their orientation if the light slows down as the
wavefronts go from one material into another.   

Boundary

Medium A

Medium B

φ 
B

φ 
A

λ 
A

λ 
B

Figure 2.9. Refraction of wavefronts.
The diagram shows two consecutive wavefronts which are one wavelength apart. Since the

frequency of the waves remains the same, no matter what medium they travel through, and since the
wave speed is equal to the product of frequency and wavelength, the wavelength is proportional to
the wave speed.  Hence the wavelength in medium B is less than that in medium A.  So as each
wavefront crosses the boundary, it is pulled around to make a smaller angle with the boundary.
Hence the rays of light, which are perpendicular to the wavefronts, must also bend as they enter the
new medium.

This law of refraction was known from experiments long before the wave theory of light was
invented.  In its original form the law was expressed in terms of a property of the two materials
called refractive index (symbol n) through the equation:

nAsinφA = nBsinφB . ... (2.2)

Clearly, there must be some relation between the refractive index of a material and the speed of light
in that material.  The refractive index of a material can be defined the ratio of the speed of light in
empty space (c) to the speed of light in the material (v):

n =
c
v ... (2.3)

This definition links the two forms of the refraction equation.
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Notes
• The law of refraction expressed in terms of refractive index, nAsinφA = nBsinφB, is known as
Snell's law.
• The symmetrical form of this equation, in which swapping the labels A and B makes no
difference, indicates that the incident and refracted light paths are reversible - light can travel either
way along the path defined by the incident and refracted rays. See figure 2.10, which (except for the
reflected ray) is similar to figure 2.8 with the ray directions reversed.

Incident rayReflected ray

Refracted ray

Normal

Boundary
Medium A

Medium B

φ 
A

φ 
B

φ 
B

Figure 2.10.  Refraction from a medium with high refractive index

• Light always travels slower in a material than it does in a vacuum.  Consequently all values of
refractive index are greater than one.
• The speed of light in a material depends on the chemical composition of the material, its
physical state and also on the frequency of the light.  The dependence of speed on frequency has
some interesting consequences which we consider in §2-7 under the heading of dispersion.
However for many practical applications it is good enough to use a single value of refractive index
for each material.  The following table shows some measured values of refractive index.

Material Refractive index
air at STP 1.0003

ice 1.31
liquid water 1.33 to 1.34

olive oil 1.46
optical glasses 1.50 to 1.75

quartz 1.54 to 1.57
diamond 2.42

• You should remember that the speed of light in air differs from its speed in vacuum by less
than 0.1%.  Therefore in most calculations you can regard air and vacuum as having the same
refractive index.
• The frequency of light does not depend on the medium.  
• It follows that, since the product of wavelength and frequency is equal to the wave speed, the
wavelength does depend on the medium.  You can see that in figure 2.9.



L2:  Reflection and Refraction 23

2-5 REFLECTION AT A BOUNDARY BETWEEN TRANSPARENT MATERIALS
Specular reflection occurs every time light meets a smooth boundary at which the refractive index
changes.  The reflectivity depends on the refractive indices of the materials on either side of the
boundary, the angle of incidence and the polarisation of the incident light.  For a given pair of
materials it also depends on which way the light goes through the boundary.

Consider first, the case where the incident light comes through the medium with lower
refractive index, from air to glass for example.  You can easily verify the dependence of reflectivity
on angle of incidence by studying the intensity of reflections in a window as you change your angle
of view from very small angles of incidence to grazing incidence (almost 90°).  The reflectivity of
glass in air is small for small angles of incidence and increases with increasing angle until it
becomes almost 100% at grazing incidence.

Near normal incidence
reflectivity is about 5%

Near grazing incidence 
reflectivity is about 90%

Air

Glass

Figure 2.11.  Effect of angle of incidence on the reflectivity of plain glass
If the refractive index decreases across the boundary, (e.g. from glass to air), then at small

angles of incidence the reflectivity is again low.  But this time as the angle of incidence increases the
reflectivity reaches 100% well before grazing incidence.  Complete reflection happens when the
angle of incidence is greater than a value called the critical angle, denoted by φc in figure 2.12.

Totally reflected ray

No refracted ray

φ c

φ 
A

φ 
A

φ 
Aφ cφ c φ c< = >

A

B

Partial reflection Total reflection

nA

n
B

Figure 2.12.  Reflection at a boundary where refractive index decreases

Beyond the critical angle all the incident light is reflected and there is no refracted ray, so the
phenomenon is called total internal reflection. The relation between critical angle and the
refractive indices of the two media can be found by inserting the maximum possible value for the
angle of refraction, 90°, into Snell's law which gives

sinφc =
nB
nA

   ...(2.4).

Remember that total internal reflection can occur only when light strikes a boundary where the
refractive index decreases; reflection is back into the medium with the higher refractive index.



24

2-6 APPLICATIONS OF TOTAL INTERNAL REFLECTION
Prism reflectors
An ordinary glass mirror consists of a reflective metallic coating on the back of a sheet of glass but
that is not the only way to make a mirror. Total internal reflection can be exploited to make a
perfectly reflecting mirror using only glass, with no metal backing.  Figure 2.13 shows how: light
enters a prism perpendicular to the first surface so it is not refracted.  When the light reaches the
next face, the angle of incidence is greater than the critical angle so all the light is reflected.  In this
example, when the light gets to the third face of the prism it is refracted as it leaves the prism.  That
final refraction could be a problem because the refractive index is slightly different for different
frequencies of light.

Figure 2.13.  Total internal reflection in a prism
However if we use a right-angled prism and a suitable type of glass (figure 2.14) the light can

be made to undergo two total reflections with no net refraction before it emerges in a direction which
is always exactly opposite to that of the incident light.  Such a device is often called a corner
reflector or retroreflector.  Retroreflecting beads are exploited in reflective road signs and "cat's
eyes".

Figure 2.14.  A corner reflector
The direction of a reflected ray is always reversed.

A pair of corner reflecting prisms can be used to displace a beam of light sideways without
altering its direction of travel or to compress the path of a light beam into a small space.  This
arrangement, which is often used in binoculars, is an example of a device called an optical relay - a
device which simply alters a light path without contributing to the formation of an image (see also
chapter L7).
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Figure 2.15.   Example of an optical relay
In this example the path of the ray is displaced sideways but its final direction is unaltered.

Light pipes
Another important application of total internal reflection is the optical fibre or light pipe.  Here a
light ray enters one end of a transparent rod or fibre and is totally reflected many times, bouncing
from side to side until it reaches the other end.  This alone is not very useful, but what is important is
that when the pipe is bent, the light path can be bent with it, staying within the pipe. The light pipe
still works provided that each angle of incidence remains greater than the critical angle, so the light
cannot get out until it reaches the flat end of the light pipe.  Although there is a high contrast in
refractive index between the material of the fibre and air, fibres often need to be coated with a
protective medium which reduces the ratio of refractive indices and hence, also, the value of the
critical angle.  In order to make sure that the angles of incidence remain large enough, the fibre
should not be bent too severely.  

Figure 2.16.  Optical fibres
Light is trapped in the fibre by total internal reflection - even when the fibre bends.

Optical fibres have many uses including data transmission, an alternative to sending electrical
signals along conducting cables.   The advantage of optical fibres here is that the capacity of the
medium to carry information is vastly greater.  Many different signals can be sent along the same
fibre; in more technical terms, optical fibres have large bandwidths.

An important medical application is the fibre-optic endoscope, a device for transmitting
images of inaccessible internal organs.  A typical endoscope contains two bundles of optical fibres -
one to carry light to illuminate the object and another bundle to transmit the image. The image is
formed by a small lens attached to the end of a collection of thousands of individual fibres.  Each
fibre carries light from one part of the image, which can be viewed at the other end where the light
emerges.  In order to get a useful image at the output end, the fibres must be arranged in the same
way that they were at the input end.  Images seen this way are necessarily grainy, since the final
image consists of a collection of light or dark coloured spots, one spot for each fibre.  



26

A

Figure 2.17.  Principle of imaging using optical fibres
The resolution is limited by the diameter of each of the fibres.

2-7 DISPERSION
The dependence of refractive index (and wave speed) on the frequency of light produces some
important effects which are often very useful and occasionally a nuisance, but nearly always pretty.
The beautiful effects can be explained in terms of the notion that the perceived colours of light are
related to the mixture of frequency components that the light contains.

The classic example is the production of a spectrum of many colours when ordinary white
light passes through a prism of clear (colourless) material such as glass.  Each ray of light which
passes through the prism is refracted twice, once as it enters and again as it leaves.  See figure 2.18.
The amount of bending or refraction depends on the frequency of the light (as well as the nature of
the glass).  So white light, which can be described as a continuous distribution of many different
frequency components, will bend by many different amounts; one ray of white light becomes a
continuous collection of rays with a continuous range of frequencies.  Only a few such rays can be
shown in the diagram.

Screen

Red

Violet

White light

Figure 2.18.  Dispersion by a prism
The angular separation between rays is exaggerated.

When a beam of white light is sent into a prism and the refracted light is allowed to strike a
diffuse reflector such as a white card, a spectrum of light is formed on the screen.  The colours of
the spectrum range from red, corresponding to the light which is refracted least, through yellow,
green and blue to violet which is refracted the most.  Since we know from independent evidence that
violet corresponds to high frequency radiation, we can conclude that the refractive index of glass is
higher for higher frequency light.  The relationship between frequency and refractive index is not,
however, a simple linear one, see figure 2.19.  
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Figure 2.19.   Variation of refractive index with wavelength
Since the frequency of light is not easily measured directly, it is traditional to specify

properties like refractive index which vary with frequency in terms of the variation with the
wavelength instead.  (Wavelengths of light can be measured using interference and diffraction
techniques described in chapters L4 and L5.)  Values of wavelength used in such descriptions are
always the wavelength in vacuum corresponding to λ = c/f.  They do not refer to the actual
wavelengths of the light in the glass.

Glass prisms are used in spectroscopes and spectrographs - instruments which disperse the
spectrum of a light source into components with different frequencies.  A simple arrangement is
illustrated in figure 2.20.

White light

Red
Violet

Prism

Screen
Slit

Light 
source

Figure 2.20.  A simple spectrograph
Angular separations between rays are exaggerated.

Rainbows
The colours of the rainbow are formed by dispersion in small water droplets.  A complete
explanation involves some complicated ray tracing, but it is clear that whatever the light paths are,
they are different for different frequencies.  Figure 2.21 shows how dispersion in a raindrop
produces a primary rainbow.  (The primary rainbow is the brightest bow, sometimes the only one
that you can see.)
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Figure 2.21.  Dispersion in a water droplet
A ray of white light from the sun is refracted as it enters a spherical raindrop (figure 2.21) and

dispersion occurs.  The dispersed light rays are totally internally reflected and are then refracted
again as they leave the drop.  The dispersed rays which come out are now travelling in different
directions, depending on their frequencies, so they appear to come from different parts of the sky.
The angles between the incident rays from the sun and the rays from the rainbow are essentially
fixed by the refracting properties of water and are on average about 138° for the primary rainbow.
This fixed value for the scattering angle accounts for the shape of the rainbow.

2-8 MIRAGES
There are several kinds of mirage.  Probably the commonest type is the illusion that light from
distant objects is being reflected by a pool of water which is not really there.  This kind of mirage is
caused by refraction in a hot layer of air close to the ground.  Although the refractive index of air is
very close to 1.000, it is not exactly 1.  Furthermore the refractive index of the air depends on its
temperature.  Light coming from the sky at an angle not much above the horizon travels into air
whose refractive index gets less as the light gets closer to the ground.  See figure 2.22.  The variation
in refractive index makes the light rays bend away from the ground so that eventually they will be
totally internally reflected within the air and will travel upwards.  You can see this effect most
noticeably on a long horizontal bitumen road on a hot day.   The black bitumen absorbs a good deal
of the sunlight which hits it and it gets very hot.  The road surface then heats the air immediately
above it, the hottest air being closest to the road, so the refractive index is least near the hot road
surface.

Cool air  -  high refractive index

Hot air  -  low refractive index

Figure 2.22.   Path of a light ray in a common mirage
Although the variation in refractive index is continuous, the process can be understood in

terms of many different layers with different refractive indices. Imagine a ray coming to the
boundary between two such  layers, as in figure 2.23.  If the ray is close to horizontal it has a large
angle of incidence, so when it goes into the hot air of lower refractive index the angle of refraction is
even larger.  In the lower part of figure 2.23 an incident ray meets a boundary at an angle greater
than the critical angle so it is totally reflected.  Then as the ray continues back up through the air the
refraction process is reversed and the angle to the horizontal gets larger.  A person seeing the
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refracted light perceives that it is coming up from the ground, but it looks like light from the sky, or
some object near the horizon, creating the illusion that the light has been reflected by a pool of water.  

High refractive index

Low refractive index

Normal

Boundary

Light which is almost horizontal is refracted to be even closer to the horizontal.

High refractive index

Low refractive index

Normal

Boundary

When the light is almost horizontal it gets totally reflected.

Figure 2.23.   Refraction and total internal reflection in a mirage
Other kinds of mirage are more complex than this but all can be explained in terms of

variations in the refractive index of the atmosphere.

2-9 IMAGES
We see things by the light that comes from them into our eyes.  Although the process of seeing is a
complex one involving both eye and brain, some aspects of seeing can be discussed in terms of ray
optics.  When you see an object your eye collects light from all over the object.  Light rays go out in
all directions from each point on the surface of the object, but only some of those rays enter the eye
and those that do are contained within a cone.  The angle of that diverging cone of rays depends on
the distance from the object point to the eye - the further away the object, the smaller is the angle.
Although the eye-brain system does not respond directly to that angle, or the degree of divergence of
the rays, it does produce perceptions of depth by much more complex mechanisms. We can,
however, model or calculate the apparent distances of object points from an eye by considering the
diverging cone of rays from each object point to the eye.  

Object Eye

Figure 2.24.  Seeing an
object

The direction and the divergence of
the rays indicate the perceived
position of the object point.

The apparent location of an object point can be found by considering rays from the same
object point arriving at the eye from different directions.  Those rays can be extended back until they
meet, in order to find out where they appear to come from.  The point where they meet is called an
image point.  When there is no refraction or reflection of the light rays as they travel from the
object to the eye, through still air for example, the positions of the object and its image coincide.
However if the light is reflected or refracted on its way to the eye, then object and image are in
different places.
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Specular reflection by a plane mirror
Although many rays of light are involved, the image point corresponding to each object point can be
found using any two rays.  All other rays from the same object point will, after reflection, appear to
come from the same image point.  The diagram shows how two rays coming from an object point
are reflected in a plane mirror.  

Object point

Image point

Reflected rays

When projected back, these rays
appear to come from the image point

O

I

Figure 2.25.  Reflection in a plane mirror
When the reflected rays are projected back behind the mirror, they appear to diverge from an

image point I which is as far behind the mirror as the object point O is in front.  Note that in this and
other diagrams the actual rays of light are drawn in black while their projections back into places
where the light does not really go (or come from) are shown in grey.  Since the light does not
actually come from the image in this case, it is called a virtual image.  This method of locating the
image by following the paths of different rays is called ray tracing.
Images affected by refraction
Objects located inside a refracting medium, such as water, seem to be in the wrong place and they
also look distorted.  You can easily observe that by putting an object in a dish of water. The diagram
shows how light rays coming from an object point under water are bent as they leave the water so
that they seem to be coming from an image point which is not at the position of the object.  In this
example the image of one object point is actually somewhat spread out - the cone of rays no longer
diverges from a unique point after refraction.  Since the eye collects only a very narrow cone of rays,
the spreading out effect is not noticeable if you keep your eye in one place.  But if you move your
head, you will see the image move!  Contrast that with normal viewing in which the brain perceives
that fixed objects stay put when you move your head.

Other examples of virtual images formed by refraction at plane boundaries include the
apparent bending of straight objects placed partly underwater and the pair of images of one object
seen through adjacent sides of a fish tank.

For more about images see chapter L3.
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Image

Object

Figure 2.26.  Viewing an object under water
The angular width of the cone of rays is exaggerated.   Only a small cone of light enters the eye.
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QUESTIONS 
The following questions do not have answers that have to be learned.  They are designed to help you
to think about the relevance and applications of principles covered in this chapter.
Q2.1 In the corner reflector of figure 2.14, the angles of the prism are 90°, 45° and 45°.  What can you say about the

refractive index?
Q2.2 Look at the diagrams below and in each case, determine whether little, almost all, or all of the incident light is

reflected.

Air

Glass

Air

Water

(a) (b) (c) (d)

Q2.3 The refractive index of small quantities of liquid can be measured by finding the critical angle of reflection.
Liquid sample

Glass hemisphere

Ray directed
towards the
centre of the
glass hemisphere

φ

Total internal reflection takes place for all angles of incidence φ greater than the critical angle.  The
critical angle with a drop of liquid present is 59°.  The refractive index of the glass is l.56.  Calculate the
refractive index of the liquid.

Over what range of values of the refractive index of the liquid can this method be used?
Q2.4 Recently, in one year, eight people in N.S.W. suffered severe spinal injuries caused by diving into shallow

water and landing on their heads.  In some cases the water was clear and the bottom of the pool was plainly
visible.  Why is it surprising that people should make that mistake?

Q2.5 Calculate the angle between the refracted ray and the normal and sketch the path of the refracted ray in the two
examples below.

45°

30°

Air

Glass

Air

Water

 = 1.00n 

 = 1.50n 

 = 1.00n 

 = 1.33n 
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Q2.6 A fish views the outside world through a water-air boundary so its view is distorted.  Suppose the fish's eye
has a field of view in water which is a cone of half angle 30°. When the fish looks straight out of the water
how much of the outside does it see?  What would the fish see if its field of view in water were a cone of half
angle 50°?

30°

Q2.7 Refer to the graph of refractive index as a function of wavelength for various materials (figure 2.19).  Which
would give a more spread-out spectrum, a prism of dense flint glass or a prism of crown glass?

Q2.8 A book quotes the refractive index of an optical glass as 1.48626 at a wavelength of 587.6 nm.  What is the
frequency of the light used?  What is its actual wavelength in the glass?

Discussion questions
Q2 .9 When you look at reflections in a sheet of glass, you can often see a double image.  Why?
Q2.10 When you look over the top of hot object, such as a bitumen road on a summer's day, the view of things

beyond seems to wobble or shimmer.  Explain.
Q2.11 Do you think that sound waves should obey the same laws of reflection and refraction as light waves?
Q2.12 Can you invent an experiment to measure the wavelength of light using specular reflection?  Could you

do it with refraction?
Q2.13 Can total internal reflection occur when light travels through water to a boundary with glass?  How

would you specify the kind of material where total reflection of light travelling through water can occur?
Q2.14 Does the value of critical angle for a given pair of materials depend on the frequency of light?  Does total

internal reflection cause dispersion?  Can there be any dispersion in light which has been totally internally
reflected?  

Q2.15 The usual way to make a spectrum using a slab of glass is to make a prism in which there is an angle
(not zero) between the faces where the light goes in and out.  Does that mean that you can't get a spectrum
from a piece of glass with parallel faces (zero angle) like a window pane?  What is the advantage of having the
two faces at an angle? 

Q2.16 Making a spectrum by just putting a prism into the path of some white light doesn't give the best
results.  What else should you do to make a really nice spectrum?
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L3 IMAGES
OBJECTIVES 

Aims
From this chapter you should develop an understanding and appreciation of what images are and
how they are formed.  In particular you will learn how lenses work.  You will also learn how to solve
simple quantitative problems involving image formation by lenses, using both geometrical and
algebraic methods.  
Minimum learning goals
1 Explain, interpret and use the terms:

(a)  image, object, real image, virtual image,
(b) plane mirror, lens, convex lens, converging lens, concave lens, diverging lens, positive
lens, negative lens, thin lens,
(c) paraxial approximation, paraxial rays, converging beam, parallel beam, diverging beam,
(d) principal point, principal axis, principal plane, focal point, focal plane, focal length,
power, dioptre,
(e) lens equation, sign convention,
(f) object distance, image distance, object position,  image position,  linear magnification,
lateral magnification, longitudinal  magnification, virtual object.

2 Explain the nature of images and how they are formed.
3 Describe and explain how lenses and plane mirrors produce images.
4 Describe and apply standard ray-tracing procedures for both thin and thick lenses.
5 Describe and explain those properties of a lens which determine its power.  State and apply the

lensmaker's formula.
6 Solve simple problems involving image formation and magnification, by single thin lenses or a

set of thin lenses with the same principal axis, using both ray-tracing and algebraic techniques.
Describe and explain the rules and techniques used in such problems.

TEXT 
3-1 IMAGES
The reflection of your face in a mirror, the view of a small insect under a microscope and the picture
on the big screen at the movies are all optical images.  They are formed by light rays whose paths
have been altered by the action of a mirror or a lens on the light coming from an object.

It is convenient to classify images into two types, called real and virtual.  In a real image the
light actually goes to (or through) the image.  Examples include the image on the cinema screen and
the light image formed on the film in a camera.  Real images are often formed on screens or other
solid surfaces, but a screen is not essential.  Even if the cinema screen were to be suddenly whisked
away in the middle of a movie, a real image would still exist in the same place, but to see it you
would have to leave your seat and go to a place, well behind where the screen used to be, where you
could look back towards the projector.  Images formed in the eye are also real images.

The light rays which form a virtual image do not actually pass through the image - they only
appear to be coming from it.  The most familiar example of a virtual image is a "reflection" in a
mirror.  Although the image is located some distance behind the mirror, the light does not actually go
there or come from there.  It is an illusion that the light comes from behind the mirror.
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The most important image-forming system of all is the human eye. Whenever you see
something, real images are being formed on the retinas of your eyes.  Sometimes this means that the
eye forms an image of an image.  This happens, for example, when you see the virtual image of your
face in the mirror or an image formed by a lens.

3-2 RAY TRACING
The most basic technique for calculating how images are formed is ray tracing, which is just the
construction of diagrams showing where light rays from an object go.  Starting from some point on
the object, a ray is drawn towards the optical device.  Where the ray meets a reflecting or refracting
boundary the laws of reflection and refraction give the new direction of the ray.  The process
continues until the ray does not meet any more surfaces.  The whole procedure is then repeated for
another ray, starting at the same object point, but heading off in a different direction.  In principle,
this procedure should be repeated for a large number of rays.  Once all the rays have been plotted
you can look for a point where they all meet.  If such a point can be found then a real image of the
object point exists there.  If the rays do not actually meet at a point, there is no real image but there
may be a virtual image.  To look for a virtual image, the rays which finally come out of the optical
system are projected backwards to find out if the those projections meet.   If they do, then their
intersection gives a virtual image point.  The tracing of many rays leads to the location of one image
point for each object point.  To locate the whole image the complete procedure is repeated for other
object points,  gradually building up a map of the complete image.  The complete process is tedious,
time-consuming and very accurate.  It is one way that professionals can check the design of complex
and expensive optical systems.  In practice, ray-tracing calculations and plotting are mostly done by
computers.

Ray tracing is also the basis of much simpler procedures for calculating the approximate
locations of images in simplified optical systems.  In some simple cases, exact answers can be found
very quickly with little effort.   A good example of ray tracing is to locate the virtual image formed
by a plane mirror.

3-3 PLANE MIRROR

 Object  Virtual image

Figure 3.1.  Image formation by a plane mirror
Figure 3.1 shows the image formed by a flat reflecting surface.  The diagram shows just a few

of the many rays diverging from the same object point.  Each ray is reflected so that its angle of
reflection is equal to the angle of incidence.  The rays themselves do not meet so there is no real
image, but if the reflected rays are projected backwards (shown by gray lines) they do meet.  Since
light does not really come from that point behind the mirror it is a virtual image point.  If more rays
are added to the diagram it is found that all the reflected rays diverge from the same virtual image
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point; so each image point is unique.  That result indicates that a really flat mirror produces a sharp
image - does that match your experience?

d d
θ θ

θ
θ

Figure 3.2.   Geometry of mirror reflection
It is actually quite easy to show that with a plane mirror all the rays from one image point are

reflected so that they diverge from one virtual image point.  Figure 3.2 shows just two reflected rays,
one normal to the mirror and another one.  Marking up equal angles θ and spotting the similar
triangles in the diagram shows that the distance of the image point from the mirror is equal to the
distance of the object point from the mirror and that the line joining them is perpendicular to the
reflecting surface.  Since that result is true for any value of the angle θ it is true for all reflected rays.
These diagrams also illustrate why the study of image formation is called geometrical optics.

3-4 REFRACTION AT A CURVED BOUNDARY
Whenever light crosses the boundary between two optical media which have different refractive
indices the light bends or refracts.  As a light ray goes from low to high refractive index it bends
towards a line normal to the surface; when it goes from high to low refractive index it bends away
from the normal. See figure 3.3.

nn'

n n'

Figure 3.3.  Refraction at a curved boundary
The medium with the higher refractive index, n, is shaded. The broken line is normal to the surface.

Parallel beam
When we consider light from a very distant object all the rays from one point of the object are
practically parallel to each other and are said to form a parallel beam of rays.  Since it is often said
that parallel lines "meet at infinity" an object point which produces a parallel beam can be described
as being at infinity.  In practice that means that the distance to the object is very large compared with
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the other relevant distances.  Many aspects of the behaviour of optical systems can be explained in
terms of what they do to a parallel beam, or rays from objects at infinity.

Figure 3.4 shows what can happen to a parallel beam of light (coming from an object point at
infinity) when it crosses a spherical boundary between two materials with refractive indices n' and n.
In this case the boundary is convex towards the incoming beam and  n' is less than n.

nn'

Focus

Figure 3.4.  Focussing by a spherical refracting boundary
A narrow beam can be focussed to a point.

Each ray obeys the law of refraction and the refracted rays form a converging cone of light.  If
the beam is narrow compared with the radius of curvature of the surface all the rays will pass close
to the same point.  The rays are said to come to a focus - the beam has been focussed to form a real
image of the object point.  The focussing effect or degree of convergence produced by the surface
depends on its curvature.  A flat surface has no curvature so it can produce no convergence - an
incident parallel beam will still be parallel after refraction, although it may be travelling in a different
direction.  The greater the curvature the greater is the converging effect.  Strong focussing is also
produced by a large contrast in refractive indices.  If the refractive indices of the two materials were
equal there would be no focussing effect, but a large ratio n/n' can produce strong focussing
provided that there is also some curvature.

Vitreous humour

Air
n = 1.00

Cornea
n = 1.34

Lens
n = 1.44

n = 1.34

Figure 3.5.  Simplified optical structure of the eye
Most of the refraction occurs at the front surface of the cornea.

An example of focussing by a curved surface is the action of the cornea of the eye (figure
3.5).  The cornea has a curved boundary with the air and most of the eye is filled with transparent
materials which have fairly uniform refractive index.  Therefore most of the refraction of incoming
light occurs  at the front surface of the cornea.  Some refraction also occurs at the the two surfaces
of the lens of the eye, but the contrast of refractive index there is quite small so the focussing by the
lens is weak.  The lens is used essentially for fine adjustment in the focussing of visual images.  For
more about the eye see chapter L7.

3-5 LENSES
A simple lens is an optical device, usually made of glass or clear plastic, which can form images.
Most lenses have a circular outline and two curved, often spherical, faces.  They form images by
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refracting rays of light at both of their surfaces.  If you knew the precise shape of a lens and the
refractive index of the material in it you could use ray tracing to calculate (or make a computer
calculate) the locations of images.   In general you would find that lenses do not produce perfectly
sharp images and there are two kinds of reason for that.  Firstly, diffraction effects (which will, be
considered in chapter L5) produce a blurred image for every object point.  The effects of diffraction
can be minimised, but not eliminated, by using large lenses.  Secondly, even if diffraction did not
exist there would still be the geometrical restriction that it is not possible to design a lens, or a
system of lenses, which produces a unique image point for every possible object point.   On the
other hand it is possible to design lenses and systems of lenses which produce satisfactory images.
The quality of the image can be improved using a more complex design - at greater cost.
Types of lenses
There are two basically different kinds of lens.  When used in air, converging lenses, which are
thicker in the middle than at the edges, make a parallel beam of light converge.  A diverging lens,
which can turn a parallel beam into a diverging beam, is thinner in the middle.  
Action of a converging lens
Figure 3.6 shows how a converging lens affects a light ray passing through it.  The total effect is just
that of refraction at two successive curved surfaces.

     n'n      n'

Figure 3.6.
Refraction by
a converging

lens

As the ray passes through the first surface it is refracted towards the normal and it then
continues in a new direction through the glass until it arrives at the other side.  There the ray goes
from glass to air so it is refracted away from the normal and emerges in a new direction.  These
changes in direction of the ray can be calculated using the law of refraction (Snell's law) so the path
of any ray can be traced out in this way.  In principle all you need to do to find out if an image
exists, and where it is located, is to trace out rays.  Ideally we would like to have all rays from one
object point arriving at a unique image point.  In reality that is impossible to achieve for all object
points, but with good design, it can be achieved approximately.
Principal axis
Most lenses are symmetrical about an axis or line through the middle of the lens.  If you rotate the
lens around this axis it looks just the same.  In optics that axis of symmetry is called the principal
axis of the lens.  From now on we think of every lens as having rotational symmetry about its
principal axis.  That is a fortunate simplification because it allows us to describe and work out the
optics of lenses using two-dimensional drawings and constructions.  You need to remember,
however, that in reality lenses, objects and images are three-dimensional structures.   The usual way
of drawing lens diagrams is to draw a line across the paper to represent the lens's principal axis
(figure 3.7).  Rays are drawn on a two-dimensional diagram which represents a slice through the
lens and the three-dimensional bundles of rays.
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Figure 3.7.
Lens and principal

axis

Focal point and focal length
The meaning of the term converging lens is illustrated by the lens's action on a parallel beam of rays
coming from a distant object point that is located on the principal axis.  When the rays come out the
other side of the lens they form a converging cone of light (figure 3.8).

Figure 3.8.  Function of a converging lens
If the whole lens is used the rays will converge but they will not all go through the same point.

An ideal converging lens would refract all the rays in a beam parallel to the principal axis so
that they pass through one real image point, which is called the focal point of the lens. (In reality
the image "point" is always a bit blurred.)  The light is said to have been focussed by the lens.    
The distance from the focal point to the middle of the lens is called the focal length of the lens.  

F

Focal point

Focal length
 f

Figure 3.9.  Focal point of a converging lens
A narrow (paraxial) beam parallel to the principal axis is focussed on to the focal point.

Paraxial rays
The somewhat blurred image "point" corresponding to a point object can be made sharper by
restricting the rays which form the image so that they are close to the principal axis and also by
making sure that the angle between any ray and the principal axis is small.  Such rays are said to be
paraxial.  Paraxial rays don't have to be parallel to the principal axis but they do have to be close to
it.  In most of the lens diagrams in this and other texts the angles between the rays and the principal
axis are often quite large and the rays may be a fair distance from the axis; so the drawings are not
good representations of the paraxial condition. The angles and off-axis distances are generally
exaggerated so that you can see the features of the ray diagrams more clearly.

If the distant object point is not located right on the principal axis, but is off to one side, the
incoming bundle of parallel rays will be at an angle to the principal axis.  If that angle is small the
rays satisfy the paraxial approximation and the converging lens will produce a reasonably sharp
image point, as shown in figure 3.10.  In this case the focus or image point is not on the principal
axis but it does lie in a plane, called the focal plane, which is perpendicular to the principal axis.
The focal point of the lens is at the intersection of the focal plane and the principal axis.  
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 f
Focal length

F

Focal plane

Figure 3.10.   Focussing by a converging lens
Incoming parallel rays from any small angle come to a focus in the focal plane.

An important feature of all ray diagrams is that if you reverse the directions of all the rays then
you get another valid diagram.  The light paths are said to be reversible.  So, for example,  to find out
how a lens affects the rays coming from an object point at a lens's focal point, you could just reverse
all the rays in figure 3.9.  That would give light going from right to left instead of the usual left to
right, so for consistency the diagram is reversed left-to-right, which gives figure 3.11.

F

 f
Focal length

Focal point

Figure 3.11.   Object point at the focal point of a converging lens
This diagram is like figure 3.9 with the rays reversed.  Light paths are reversible.

Thus every lens has two focal points, one one each side.  Provided that the lens is immersed in
the same medium on both sides, the two focal lengths are equal.
Converging and diverging lenses
Figures 3.9 and 3.10 show how a converging lens makes a parallel beam of light into a converging
beam.  A converging lens can also make a converging beam into an even more converging beam
(figure 3.12).  It can also refract a diverging beam into less diverging beam, a parallel beam or even
into a converging beam (figure 3.14, below).  In summary, a converging lens increases the
convergence of any light beam which passes through it.

F

Focal point

Focal length
 f

Figure 3.12.  Increasing the convergence of a beam
The beam is focussed before the focal point.

A diverging lens is thinner in the middle than it is at its edge.  It bends the parallel beam
from a distant point into a diverging cone of rays which (ideally) appear to come from one virtual
image point.  Here the focal point and the focal plane are on the same side of the lens as the incident
light.
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Focal plane
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Figure 3.13.  Function of a diverging lens
Just as a converging lens increases the convergence of a bundle of rays, a diverging lens

decreases the convergence - or you could say that it increases the divergence of the rays.
Power of a lens
The shorter the focal length of a converging lens the better it is at converging light.  This
characteristic of a lens, its converging ability, is called power, which can be defined formally as the
reciprocal of focal length:

P =
l
f     . ... (3.1)

The SI unit of optical power is the reciprocal meter (m-1).  A commonly used alternative
name for the unit, is the dioptre.  For example, if the focal length is +0.500 m, the power is
+2.00 m-1 or 2.00 dioptres and if the focal length is -0.040 m, the power is -25 m-1.  Converging
lenses always have positive values of power and are often known as positive lenses.  The negative
value of power for a diverging lens expresses the fact that it does the opposite of converging; a
diverging lens can be called a negative lens.

3-6 FORMATION OF IMAGES BY THIN LENSES
Figure 3.14 shows how a converging lens refracts the divergent bundle of rays from one point on an
object into a bundle of rays which converge onto a real image point.  The diagram shows only five of
the many rays which could be drawn from the object point.  

 i o
 f

O
F1

F2 I

 f 

Figure 3.14.  Image formation by a converging lens
Ideally, all the rays from one object point converge to one image point.
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If all the rays are paraxial they will all come to a focus at the same image point.  The actual
paths of all these rays could be worked out by ray-tracing.  Image points for other object points
could be located in the same way.  There are some features of this example which are worth noting;
for an ideal thin lens and paraxial rays we get the following results.
• All object points which are at the same distance from the lens produce image points at equal

distances from the lens.  So the image position can be located using one object point and its
image point.  (Different object distances give different image distances.)

• If the object is placed further from the converging lens than the focal length its image will be
real.

• The orientation of the real image is opposite to that of the object - it is said to be inverted.
Simplified model of a thin converging lens
If all the rays are paraxial, detailed ray tracing is not necessary.  The function of a lens can be
described completely in terms of a geometrical construction in which the lens is represented by a set
of points, lines and planes and the location and size of an image can be found by tracing only two
rays.  Figure 3.15 shows the essential features of the model for a thin lens. The principal plane is
a plane perpendicular to the principal axis located centrally within the lens.  The first focal plane
and the first focal point are located on the side of the lens where the light comes from.  Light
diverging from a point source in the first focal plane will emerge as a parallel beam.  The second
focal plane contains all the points where an incoming beam of parallel rays can come to a focus.
The focussing properties of the lens are determined by the locations of the principal plane and the
focal planes relative to the principal axis.

F2F1

First focal plane Second focal plane
Principal

plane

Focal
length

Principal
axis P

Principal
point
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focal
point

Second
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f f 

Figure 3.15.  Geometrical model for the function of a lens

Standard ray tracing
The following procedure produces accurate answers provided that the actual situation is restricted to
paraxial rays.  To get accurate results you need to make a scale drawing - graph paper helps - but the
procedure can also be used to make rough sketches to work out, for example, whether images are
real or virtual and whether they are upright or inverted.
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Figure 3.16.   Standard ray tracing for a converging lens
• First draw two perpendicular lines to represent the principal axis and the principal plane

of the lens. The principal point is at the intersection of those lines.  If you like you can
include a small sketch above the principal plane to indicate the type of lens.  Measure out and
mark the positions of the two focal points. (For a converging lens the first focal point is the
one on the side where the light comes from; for a diverging lens it is on the other side.)  

• Mark the object position, O, and draw a line representing the object, perpendicular to the
principal axis with one end on the axis.

• Choose an object point somewhere off the principal axis.  
• From that object point construct any two of the following three rays (figure 3.16).

1. An incident ray from the object point parallel to the principal axis is refracted so that it
intersects the second focal point.
2. An incident ray which intersects the first focal point is refracted parallel to the principal
axis.
3. An incident ray which intersects the principal point continues undeviated.

• The image point will be at the intersection of the two refracted rays.  If those rays actually
cross you have a real image.  If the rays don't meet you will need to extend them to find where
their extensions cross.  In that case you have a virtual image.  (It is a good idea to show these
extended rays in a different style;  in  diagrams in this book they are printed grey.)

• Draw a line perpendicular to the axis to represent the image.  
Diverging lens
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Figure 3.17.  Standard ray tracing for a diverging lens
Note that the first focal point is on the far side of the lens.

Figure 3.17 illustrates the construction for a diverging lens.  Note that the first focal point is
now on the far side of the lens.  The rules for constructing rays are exactly the same.  Again, any two
of the three rays will do.  In this case real rays do not intersect, they have to be extended backwards
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(shown here as grey lines) to find the image.  If any ray has to be extended back to the image point,
that always indicates a virtual image. You will find that a diverging lens always produces a virtual
image of a real object.  The construction in figure 3.17 also shows that the image is upright.

This ray tracing procedure works perfectly only if you bend the construction rays at the
principal plane rather than at the curved surfaces of the lens.  When you do that you no longer need
to worry whether the rays in your construction are truly paraxial or not; the rays can be drawn at any
angle and at any distance from the principal axis and they will still give the same answer as a realistic
construction using paraxial rays refracted twice at the surfaces of the lens.  
The lens equation
Image formation by a thin lens using paraxial rays can also be described by the lens equation:

l
o   + 

l
i  =

l
f    . ... (3.2)

Here o and i are the distances of the object and the image from the lens (see figure 3.17) and f is the
focal length.  This equation is simply the algebraic equivalent of the ray tracing procedures described
above and will give exactly the same answers for paraxial rays.  The equation works for both
converging and diverging lenses provided that a suitable sign convention is used.
Sign convention
The lens equation requires the following sign convention (or an equivalent one).  
• The object distance o is measured from the object to the lens.
• The image distance i  is measured from the lens to the image.
• Object and image distances are positive if they are measured in the same general direction as

that in which the light goes, negative otherwise.
• A negative value of image distance indicates a virtual image and a positive value means that the

image is real.
• The focal length, f, is always positive for a converging lens, and negative for a diverging lens.

The convention should be easy to remember because you just follow the light and use the
natural sequences: (a) object - lens - image and (b) first focal point - lens - second focal point.  Draw
a single headed arrow to represent each distance. Then if any arrow points backwards (against the
light) the corresponding distance value is negative. The convention means that the object distance is
normally positive - for one real object and a single lens it is always positive.  (It can have a negative
value only in a compound optical system where there is an intermediate image which acts as a virtual
object for the next component of the system.  See chapter L7.)

The sign convention is illustrated by the directions of the arrows in figures 3.16 and 3.17.  For
the formation of a real image by a converging lens (figure 3.16) f, o and i are all positive.  In the case
of the diverging lens (figure 3.17), f is negative, o is positive and i is negative.

Example
Find the image formed by a converging lens of focal length 35 mm when the object is placed 85 mm
from the lens.  
Answer

Rearrange the lens equation to get:  li  = l
f    - l

o   .

You can either start substituting in this equation, or continue the algebraic manipulation,
making the image distance the subject:

 li = o  -   f
o.f    ;

so i = of
o  -   f    

= (85 mm) ×  (35 mm)
(85 - 35) mm    =  60 mm.

Since value of i  is positive the image is real and it is located 60 mm from the lens, or 145 mm
from the object.
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3-7 MAGNIFICATION
The magnification produced by a lens is defined as the ratio of the image size to the object size.  If
the sizes are specified in terms of lengths, the corresponding magnification is called a linear
magnification whereas sizes described as angles subtended at the lens give angular
magnification.  Angular magnification will be considered in chapter L7 - here we concentrate on
linear magnification.  Linear sizes can be measured in different ways.  If the dimensions of object
and image are specified using measurements perpendicular to the principal axis, the linear
magnification is called lateral magnification.   It can easily be worked out from a standard ray
diagram such as figure 3.18.  

i o 

O
I

F2

F1

Object

Image
P

ho

h i

Figure 3.18.  Lateral magnification by a converging lens
The similar triangles (shaded) show how magnification is related to object and image distances.

The magnitude of the lateral magnification is defined as the ratio of the image size to the object
size:

|m | = 





hi

ho
  . ... (3.3)

The pair of similar triangles, shaded in figure 3.18, also shows that the magnification is given by the
formula:

m = -
i
o    ... (3.4)

where the minus sign is inserted so that a negative value for magnification indicates an inverted
image.  In figure 3.18 the real image is inverted and magnification is negative.

o 
O I F1i 

Object

Image P
3

ho
h i

Figure 3.19.  Lateral magnification by a diverging lens
Figure 3.19 shows the same situation as figure 3.17; here the virtual image is upright and the

magnification is positive. The two shaded triangles can be used to show that the magnification
formulas (equations 3.3 and 3.4) are the same as those for the converging lens.
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3-8 COMBINATIONS OF LENSES
The general case
To find an image formed by two or more lenses which are not in contact, you can't just add the
powers.  But the image can be located by standard ray tracing or by repeated application of the lens
equation.  Both methods proceed in the same way.  The first step is to calculate the image formed by
the first lens alone, ignoring the second lens.  Then use that image as the object for the second lens.
The new object distance is found by subtracting the previous image distance from the lens
separation.  Then calculate the second image.  Repeat the process for each lens in the system.  

Example
Two converging lenses with focal lengths of 20.0 mm and 30.0 mm are placed 10.0 mm apart with
their principal axes coinciding.  An object is located 60 mm along the principal axis from the stronger
lens.  Find the position and lateral magnification of the image.
Answer
The first step is to calculate the image formed by the first lens alone - call it lens A.  Proceed as though
the second lens is not there.  Rearranging the lens equation gives

 l
iA

  = l
fA

   -  l
oA

   .

Substituting  fA = 20.0 mm and  oA = 60 mm gives iA  =  30 mm. The result means that there
would be a real image 30 mm from lens A.  Now imagine that lens B is put in place 10.0 mm beyond
lens A and use the image formed by lens A as the object for lens B (figure 3.20).

Object
Virtual
object

Final
image

Intermediate
image

     

A B

L

o B

    

    o A i A

&

i B

Figure 3.20.  Distances for calculations with two lenses
The image formed by lens A acts as the object for lens B.

 In this example there is a problem: lens B will intercept the light before it gets to the location
of image A.  The problem can be handled by saying that the object distance is negative and that the
object for B is a virtual object.  

Now calculate the new object distance from the previous image distance and the separation L
between the lenses:  oB  = L - iA = 10.0 mm - 30 mm = -20 mm.   Use the lens equation again:

 l
iB

  = l
fB

   -  l
oB

   .

The final image distance is iB = 12.5 mm.

The answer means that the image is real and is located 12.5 mm past lens B, or 22.5 mm from
lens A.

The final magnification is the product of the two individual magnifications:
m = mAmB

=








-  
iA
oA

 








-  
iB
oB

 

=






iA

oA
 






iB

oB
 

= 



  30 mm

60 mm  



12.5 mm

  -  20  mm     =   - 0.31 .
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The negative value here indicates that the image is inverted.
The same answers can be obtained using standard ray tracing diagrams drawn to scale.  Figure

3.21 shows how that can be done, using separate diagrams for each image, in order to avoid cluttering
the construction too much.

Object
FA1 FA2

    o A

Intermediate
image

     

i A

A B

Scale: 20 mm

FB2FB1

Virtual
object

Final
imagei B

o B

Figure 3.21.  Ray tracing using two lenses
The top part of the diagram shows how the intermediate real image is located, by ignoring the

presence of lens B.  When lens B is in place the intermediate image becomes a virtual object for lens B,
so the lower part of the diagram shows virtual rays from the object extended back to lens B.  On the
front (left) side of the lens those rays can be drawn as real rays.  The construction rules are the still the
same.  A ray from the object parallel to the axis is bent to go through the second focal point.  Another
ray extended back from the object to intersect the first focal point emerges parallel to the axis.  Since
these two refracted rays are real their intersection gives the location of the real final image point.

Thin lenses in contact
When the separation between two thin lenses is small compared with each of their focal lengths
calculations like the one above become much simpler - the two lenses can be treated as one!  When
two thin lenses of powers P1 and P2 are placed in contact the resulting power of the compound
lens is the sum of the individual powers:

P  = P1 + P2 . ... (3.5)

Example.  The combined focal length of two converging lenses in contact, with individual focal
lengths of 50 mm and 35 mm is given by

1
f  = 1

 50  mm   +  1
35 mm   .

So f = 50  mm  ×    3 5  m m
 50  mm  +  35  mm   = 21 mm.

Note that the power is greater than that of either lens and the focal length is shorter.  Now treat
the combination as a single lens with focal length 21 mm.

Example.  When a converging lens with power +5.0 m-1 and a diverging lens with power -5.0 m-1

are placed in contact, the light emerges unchanged:   P  =  +5.0 m-1 + (-5.0 m-1)  =  0.0 m-1.
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3-9 LENS DESIGN
Types of lenses
Lenses are sometimes described in terms of the shapes, convex, concave or plane, of their two
refracting surfaces, as illustrated in figure 3.22.  

Biconvex Plano-convex Meniscus

Converging lenses

Biconcave Plano-concave Meniscus

Diverging lenses

Figure 3.22.  Naming some lens shapes
In all cases the refractive index of the lens is greater than that of the surrounding medium

Remember that all converging lenses are thicker in the middle than at the edges whereas
diverging lenses are thin in the middle.
Lensmaker's formula

n 

Incident light direction
Surface 1 Surface 2

R2 

R1 Centre of curvature
for surface 2

Centre of curvature
for surface 1

Figure 3.23.  Specifying the radii of curvature of a lens
The focal length of a thin lens with spherical surfaces can be calculated from the curvature of

the two faces and the refractive index of the lens material.  Figure 3.23 shows a double convex lens
made of material with a refractive index n surrounded by a medium of refractive index n'.  The radii
of curvature of the two surfaces are R1 and R2.  The power is given by the lensmaker's formula:

P =
l
f   =  



 

n
n'  - 1  



l

R1
 - 

1
R2

   .

If the lens is surrounded by vacuum or air, n' will be 1.000 and the formula can be written as

P =
l
f   =  (n - 1)(

l
R1

  - 
1
R2

 ) . ... (3.6)

The sign convention needs to be extended, as follows, to give signs to the values of the radii.
Imagine the light coming from a particular direction and label the first surface reached by the light
number 1; the other is number 2.  Measure each radius from the surface to the centre of curvature.
An equivalent statement is that if a surface is convex to the incident light, its radius is positive and if
it is concave, the radius is negative.
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In the example shown in figure 3.23, imagine the light coming from the left so the radius, R1,
of the first refracting surface is positive and R2 is negative.  The negative value of 1/R2 will be
subtracted from the positive value of 1/R1, which must give a positive answer.  You will get the same
result if you take the light coming in from the right and swap the labels 1 and 2.

Example  
Find the power and focal length of a biconvex lens made of glass with refractive index 1.53 whose
surfaces  have radii of curvature 0.250 m and 0.400 m.
Answer  
Use the lensmaker's formula with R1 = 0.250 m;  R2 = - 0.400 m; n   = 1.53 .

P = (n  - 1)



l

R1
  -   1

R2
    =   0.53



l

0.250 m  -  
l

-0.400m  

= +3.4 m-1. [Keep 3.445 in the calculator.]

f = 1
P   =  0.29 m.

You can check that you will get the same answer if you swap the sequence and put
R1 = 0.400 m; R2 = -0.250 m.

3-10 ABERRATIONS
Aberrations are departures from the desired or ideal shape of an image produced by an optical
system.  They are not necessarily faults in the design of a lens but are due simply to the inability of
any lens to produce perfect images from a wide range of objects.  In fact the only perfect image-
forming optical device is the plane mirror, which is unable to magnify.
Spherical aberration
When a wide parallel beam is focussed by a converging lens with spherical surfaces the focal length
for rays which go through the outside margins of the lens is shorter than that for paraxial rays.  See
figure 3.24.  Only rays which are close to the principal axis and nearly parallel to it are brought to a
focus at a well-defined focal point  Fp.  So when a wide beam is used parts of the image will be out
of focus.

Aberration

Fm
Fp

Figure 3.24. Longitudinal spherical aberration
Marginal rays come to a focus (Fm) before the focus of the paraxial rays  (Fp) .

There are three ways to minimise spherical aberration.
1. Use a lens whose curved surfaces have specially computed non-spherical shapes.  Such a lens

is expensive to make and works only for a limited range of object positions.  However, the
aberrations can be minimised if the rays are bent approximately the same amount by both
surfaces of the lens.  So if you have a plano-convex lens spherical aberration will be less if
you put the curved face rather than the plane face towards the light.

2. Correct the aberrations due to a positive lens by placing next to it a negative lens whose
aberrations are in the opposite sense.  This technique is not very efficient as you end up with a
lens of very little power.
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a) better b) worse

Figure 3.25.   Reducing spherical aberration
It is better to have some refraction at both surfaces (a) rather than all at one surface (b).

3. Restrict the angles of incidence by using only the central section of the lens and placing the
object close to the principal axis.  All rays will then be paraxial rays, so the lens equation
works for all object and image points. The disadvantage is that you don't get much light
through the lens, so the image is not very bright.

Chromatic aberration
The focal length of a simple lens depends on the refractive index of the material but that varies with
the frequency of light.  So there are different focal points for different frequencies.  Consequently
the magnification will also change for different frequencies.  The image of an object illuminated with
white light will be surrounded by a coloured halo.  

Aberration

Fb Fr

White light

Blue

Red

Figure 3.26.  Longitudinal chromatic aberration
The focal length for blue light is less than that for red light.

There are two ways to minimise chromatic aberration.
1. Make the lens from a material whose dispersion, the variation in refractive index with

wavelength, is small.
2. Make an achromatic doublet which consists of a converging lens and a diverging lens in

contact.  The dispersion in the two kinds of glass is different.  A typical combination is a
positive lens made of crown glass and a negative lens made of flint glass.  An achromatic
doublet can completely eliminate chromatic aberration for only two frequencies of light, but if
those two frequencies are suitably chosen, then the aberration for other frequencies is reduced.
Although an achromatic doublet consists of a positive and a negative lens, the combination still
has some power.

Figure 3.27.
An achromatic

doublet
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THINGS TO DO 
Magnifying glass
Beg, borrow or buy a cheap magnifying glass.  You can use it to observe many of the things
described in this chapter and you can measure its focal length.
Measuring focal length  
You can easily measure the focal length of a converging lens by forming a real image of a distant
object on a small screen such as a piece of paper.  (You may need a support to prop up the screen.)
On a bright day in a room without too much light, hold the lens so that it faces a bright scene outside
the room.  Place your screen parallel to the principal plane of the lens and move the the lens until
you get a sharp image of the outside scene on the screen.  Measure the distance from the lens to the
screen to get an estimate of the focal length.  Strictly, you have measured the image distance, but if
the object distance is large by comparison, then the image distance is practically equal to the focal
length.  A variation on the method is to put a piece of paper on the floor under an unshaded light
globe and turn the light on.  Put the lens between globe and paper and move it until you see a sharp
image of the globe's filament on the paper.

On a sunny day you can use the lens to focus an image of the sun on to a piece of paper and
measure the focal length.  If you leave the image there long enough you can char the paper or even
set it alight!   That will show how the energy flux from the sun is being concentrated in the image.   
NEVER look through the lens at the sun - in fact you should never look directly at the sun at all.
Virtual and real images
Look through the magnifying glass at an object such as a pencil.  Start with the pencil closer to the
lens than the focal length.  You should see a virtual, upright image.  Gradually move the object
further from the lens and note what happens to the image.  There will be a position, or a region,
where you lose the image.  How far from the lens is the pencil when that happens?  You would
expect it to happen when the object is in the focal plane.  Where do you expect the image to be?

If you keep moving the pencil further away you will find another, inverted, image.  Although it
is not formed on a screen it is a real image.  To demonstrate the real image in space more forcefully
make an image of a bright object such as a light globe on a piece of translucent paper.  Look at the
image from behind the paper.  Now slowly slide the paper sideways out of the light path, letting part
of the image go off the edge of the paper.  You can still see the image there in space.   The fact that
the image could be picked up by the paper shows that it is real.
Combining lenses
If you can scrounge another magnifying glass, measure its focal length.  Predict what the combined
focal length will be if you put the two lenses in contact.  Do it and check your prediction
experimentally.
Making a lens
Find a clear bottle and look at things through it.  Then fill it with water and look at the same things
again.  The images you see will be distorted but they are nevertheless images.  Use the bottle of
water to produce real images of bright objects on a piece of paper.   Hence estimate the focal length
of the cylindrical bottle-lens.
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QUESTIONS 
Q3.1 What is the size of the smallest plane mirror you can use to see yourself from head to toe without moving

your head or the mirror?
Q3.2 When will a lens give a lateral magnification of +1.00?  When will it give a magnification of -1.00?  In each

case what kind of lens can you use and where do you put the object?
Q3.3 Use the ray-tracing method to locate the image of an object placed in front of a converging lens between the

focal point and the lens.
Q3.4 Consider any converging lens.  Use the lens equation to demonstrate each of the following results.

(i) An object at an infinite distance from the lens gives a real image in the focal plane on the other side.
(ii) An object at distance 2f gives a real image at a distance 2f on the other side.
(iii) An object in the focal plane gives an image at an infinite distance.
(iv) An object between the focal plane and the lens gives a virtual image on the same side of the lens.

Q3.5 Consider any diverging lens.  Use the lens equation to show that for all positions of the object, the image is
virtual and is on the same side of the lens.

Q3.6 You can always tell whether a lens will be converging or diverging just by comparing its thickness in the
middle with that at the edge. The sign convention used with the lensmaker's formula should give the same
result.  Check that this is so in the following three examples.

r = 1.0 m
r = 1.0 m

r = 1.0 m
r = 1.0 m

r = 0.50 m

n = 1.5 n = 1.5

n = 1.5

(a) (b)

(c)

Q3.7 a) Calculate the focal length of the lens in Q3.6(a) when it is immersed in water.  The refractive index of
water is 1.33.
b) Will an air filled plastic bag used underwater by a skindiver serve as a converging or a diverging lens?

Q3.8 The definition of power of a lens matches intuitive ideas of powerful or less powerful lenses.  For example
suppose that we have two converging lenses.  One needs to be held 0.10 m from a wall to focus a distant
scene on the wall.  The other needs to be held 0.20 m from the wall.  The first is bending the parallel rays
more strongly - it is the more powerful lens.  Sketch the path of a number of rays to illustrate image
formation in these two cases.  Calculate the powers of the two lenses.

Q3.9 Suppose that a crown glass lens has a focal length of 0.100 m for a typical frequency of red light.  What is its
focal length for violet light?  Refer to the graph of refractive index as a function of wavelength, figure 2.19.

Q3.10 The angular size of the sun seen from earth is about 0.01 rad.  A magnifying glass with a focal length of
150 mm and a diameter of 65 mm is used to produce an image of the sun on a card.  What is diameter of the
image?

Q3.11 Two lenses with powers of 5.0 m-1 and 4.0 m-1 are arranged so that their principal axes coincide.  Light
from an object 35 mm high goes first to the 5 dioptre lens.  Find the position, nature (real or virtual, upright
or inverted) and the size of the image when the object is placed 0.80 m from the first lens,
(a) when the lenses are 0.60 m apart and
(b) when they are 0.10 m apart.



L3:   Images 52

Q3.12 Calculate, by successive applications of the lens formula 1o  + 1
i   = 1

f   , the position of the image
formed by the two-lens system below.  The object is at infinity.

0.20 m

To object 
at infinity

f f 1 2= 0.40 m = 0.60 m

Discussion Questions
Q3.13 Explain why a lens has chromatic aberration, whereas a mirror does not.
Q3.14 A lens can produce really sharp images only if all the object points are in one plane - i.e. if they are all

at about the same distance from the principal plane of the lens.  A plane mirror produces sharp images for all
objects at once - no matter how far away they are.  Explain.  How does the lateral magnification produced by a
plane mirror depend on the object distance?

Q3.15 Can you devise an arrangement of mirrors which allows you to see the back of your head?  Make a
sketch and show some rays.

Q3.16 A converging beam of light strikes a plane mirror.  Is the image real or virtual?  Explain.
Q3.17 Under what conditions does a converging lens produce a real image?  Can such a real image ever be

upright?  Explain.
Q3.18 Which way up is the image on the retina of your eye?  Is that a problem?
Q3.19 Under what conditions is the lateral magnification of a lens infinite?  Does an image exist if the

magnification is infinite?
Q3.20 Can a diverging lens be used to produce a real image?  Explain and discuss.
Q3.21 Can a virtual image be viewed on a screen?   Can you photograph a virtual image?  Discuss.

APPENDIX 
Paraxial Rays
Paraxial rays must be close to the principal axis and also they must make small angles with the
principal axis.  The criterion for a small angle is that tanα ≈ sinα  ≈ α.  The following table illustrates
how good the approximation is.

α/degree α/rad sinα tanα
5.00 0.0873 0.0872 0.0875
10.00 0.1745 0.1736 0.1763
15.00 0.2618 0.2588 0.2679
20.00 0.3491 0.3420 0.3640
30.00 0.5236 0.5000 0.5774
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L4 INTERFERENCE
OBJECTIVES 

Aims
When you have finished this chapter you should understand how the wave model of light can be
used to explain the phenomenon of interference.  You should be able to describe and explain, with
words and and a minimal use of mathematical formulas, some idealised examples of interference,
such as that produced by two coherent monochromatic point or line sources or monochromatic
fringes in a thin film or wedge.
Minimum learning goals
1. Explain, interpret and use the terms:  

phase, phase difference, in phase, superposition, interference, interference pattern, path
difference, optical path difference, coherence, coherent sources, incoherent sources, coherent
waves, incoherent waves, fringe, order (of a fringe), amplitude, angular position, fringe
separation, thin film, thin film interference.

2. State and explain the principle of superposition.
3. Describe and explain how interference between light waves can produce spatial patterns of

varying intensities of light.  Describe the conditions which are necessary for the formation of
such interference patterns.

4(a) Use words, diagrams and graphs to describe interference patterns produced on a plane screen
by two monochromatic,  coherent, point or parallel-line sources.

  (b) State and apply the relations among (i) wavelength, (ii) slit separation, (iii) angular and linear
positions of light and dark fringes, and  (iv) the distance from the slits to the screen.

5(a) Describe and explain interference of monochromatic light produced by reflection from thin
films of uniform and non-uniform thickness.

  (b) State and apply the conditions for maxima and minima in reflected monochromatic light for
thin films and wedges.

6. Describe examples and applications of thin film interference
7. Describe and explain the appearance of interference patterns produced by double slit and thin-

film arrangements with white light.

PRE-LECTURE 
4-1 SUPERPOSITION OF WAVES
So far we have described the behaviour of light in terms of the behaviour of light rays which were
usually straight lines although they could change direction at a boundary between two media.  In this
chapter and the next we look more closely at the wave nature of light and in doing so we will see
some of the limitations of the ray model.
Revision
You should make sure that you still understand the idea of an oscillation and the terms amplitude,
phase and frequency -  see chapter FE7.  Also re-read §1-2 in chapter L1.
Addition of waves
Interference, the topic of this chapter, is just the combination of waves.  Interference of light waves
can be described in terms of electric field (see chapter E1).  To see how to calculate the combined
effect of two waves think of two simple harmonic waves with the same angular frequency ω  and
equal amplitudes A as they both pass through the same point in space.  Suppose that they have the
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same polarisation, which means that their electric fields are parallel (or antiparallel) and their electric
fields at the point of interest can be described by the components E1 and E2 referred to the same
direction.  The two waves may, however, have different phases.  The equations describing how these
field components change with time at one fixed point  in space can be written as

E1 = A sin(ω t)

and E2 = A sin(ω t + φ)

where φ is the phase difference between the waves.  (These equations match the wave equation 1.1
with x = 0)  The total field is found using the principle of superposition which says that the total
field is equal to the vector sum of the individual wave fields.  'Vector sum' means that we have to take
proper account of directions, by using components for example.  In this simple example the
directions are chosen so that each field can be described using only one component; hence simple
algebraic addition gives the answer:*

E = E1 + E2  =  2A  cos


φ

2    sin (ω t  +  
φ
2 ) .

The equation can be rewritten as E = At sin (ω t  +  
φ
2 )

where the new total amplitude is At = 2A  cos


φ

2   .

 1

 2

 Sum

 Time
 Electric field

 φ  = 0  φ  = π/2  φ  = π

Figure 4.1.  Addition of two electromagnetic waves
The amplitudes of the two elementary waves are equal. The sum of waves 1 and 2 is shown below.

Important things to note about this example are that the amplitude of the total electric field
depends on φ, and the angular frequency of the resultant wave is still ω.  Two special cases are of
interest.
• If the waves are in phase, then φ  =  0, so the resultant amplitude is twice the amplitude of one

of the waves:

2A  cos


φ

2   = 2A .

Since the 'intensity' (irradiance in the case of light) of a wave is proportional to the square of
its amplitude, the intensity of the resultant wave is four times the intensity of one of the
original waves.

                                                
* The addition is carried out using the identity:

sin α + sin β ≡ 2 sin 



α  +  β

2    cos 



  α  - β2    .
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• If the waves are out of phase by half a cycle, then φ  =  π so the total amplitude is

2A  cos


φ

2   = 0

and the intensity of the resultant wave is zero.
Note
The terms 'constructive' and 'destructive' are sometimes used to describe these interference maxima
and minima.  Those names are avoided here because they can be misleading.  Nothing is actually
destroyed in wave interference; rather the effect of two waves is always additive, as expressed by the
principle of superposition.  Certainly energy is never destroyed - if energy seems to be missing from
some place it always shows up somewhere else.

TEXT & LECTURE 
4-2 YOUNG'S DOUBLE SLIT EXPERIMENT
The most famous of all demonstrations of the wave nature of light is Thomas Young's double slit
experiment.  Here we describe a modern version of Young's experiment as demonstrated in the video
lecture.  The arrangement (figure 4.2) consists of a source of light, a coloured filter, an opaque plate
with a narrow slit cut into it, another plate with two narrow parallel slits in it and a white screen for
viewing the light.   Each of the slits is quite narrow, typically less than a tenth of a millimetre, and the
two slits in the second plate are usually separated by only a fraction of a millimetre.

Light travels from the source through the filter to the first slit.  From there it travels to the plate
with two slits where much of it is blocked off but some can get through both the slits.  Some of the
light which finally gets through is intercepted by the screen.  

 Interference
pattern on screen

Source
of light

Single narrow slit
to provide a line
source

Two narrow slits illuminated
by the single slit behave 
as coherent sources

 Filter

Figure 4.2.  Arrangement for Young's experiment
When only one of the slits in the second plate is open there is a diffuse pool of light on the

screen.  This patch of light is wider than the slit that the light came through.  This spreading out is
called diffraction,  a topic which will be taken up in the next chapter.

When light passes through each of the pair of slits in turn (keeping the other slit covered) you
can see a pool of light on the screen.  The areas covered by these two pools of light overlap
considerably, so one would expect naively that with two slits open the resulting pool of light would
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just be a merging of the two pools already seen, bright in the middle and falling off at the edges.
This expectation turns out to be quite wrong - instead of a continuous patch of light there is a pattern
of light and dark stripes, called interference fringes.  The ray model of light has no hope of
accounting for that!  

Figure 4.3.  A twin slit interference pattern
At some places where there used to be light from each slit separately there is now darkness,

but the energy in the light has not been destroyed.  The brightest parts of the fringe pattern are now
more than twice as bright as the brightest part of the light pool from one slit.  The energy of the light
has just been redistributed.

Although Young's original experiment used white light, the contrast between light and dark
fringes is enhanced if a suitable coloured filter is used to restrict the range of frequencies in the light.
The fringes are sharpest when a very narrow range of frequencies - monochromatic light - is used.
(On the other hand using a broad range of frequencies produces some pretty multi-coloured effects -
more about that later.)

The explanation of Young's experiment needs the wave model of light.  To see how the wave
model works it is useful to study a similar experiment using water waves instead of light, in which
the superposition of waves can be seen directly.
Interference in water waves
Many  aspects of wave behaviour can be observed in water waves.  In a simple direct analogue of
Young's experiment  straight-line water waves (analogous to plane waves in three dimensions) are
generated by a long paddle.  The waves travel to a barrier with two narrow slots in it.  When only
one of the slots is open (figure 4.4) diffraction can be observed; the waves spread out instead of
forming a sharp shadow.  Each of the wave fronts  coming out the other side has a roughly  circular
shape, but the amplitude of the waves is weaker at the sides than it is in the straight-through
direction.

Figure 4.4.
Diffraction of
water waves at

a hole

When both slots are open a new feature, called interference, is seen: there are some places
where there is practically no wave disturbance and others where it is quite strong.  See figure 4.5.

In the case of water waves the wave disturbance can be taken to be the displacement of the
surface of the water from its equilibrium level.  The amplitude of the resultant wave pattern varies
from a minimum of zero at some places to a local maximum at other places.   Furthermore, although
the wave disturbance at any place varies in time, the amplitude at any single place is fixed.  At a place
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where the amplitude is a maximum, say A, the wave disturbance varies from a minimum of -A to a
maximum of +A.  At a point where the amplitude is equal to zero, there is no net wave disturbance at
any time.  The amplitude of the resultant wave changes continuously from point to point between the
locations of the maxima and minima.

Figure 4.5.  Interference of water waves from two slots
Maxima and minima in the amplitude occur at fixed locations, along lines radiating from the mid-point of the

two slots.  Wave crests are shown with full lines, troughs with broken lines.

These maxima and minima correspond to the fringes in Young's experiment.

Irradiance  

 Position on screen, y

Figure 4.6. Variation in brightness for Young's twin slits

In this example the locations of the points of maximum and minimum amplitude all lie on
approximately straight lines radiating from a point mid-way between the slots.  If you look at the
resultant wave at places in between the positions of the maxima and minima you will see that the
amplitude varies smoothly with position.  Figure 4.6 shows how the intensity varies with position on
the screen for a typical Young's slits experiment using light.
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4-3 SUPERPOSITION
The key to understanding interference is the principle of superposition which says simply that the
combined effect of several waves at any place at a particular instant of time is given by the sum
(vector sum if the wave property is a vector) of the wave property for the individual waves.  The
contribution from one wave is just that which would occur if the other waves were not there.  In the
case of the water waves the appropriate wave property is the linear displacement (change in position)
of the surface of the water from its equilibrium position; for example if one wave produces an
upward displacement of 2.0 mm and the other gives a downward displacement of 1.5 mm, the net
effect is 0.5 mm up.  In the case of light waves the appropriate wave property is the electric field
(which can point in any direction perpendicular to the direction of propagation).

The interference pattern can be understood in terms of superposition.  There are some places
where a crest of one water wave arrives at exactly the same time as the trough of the wave from the
other slot.  At any one of those points the net displacement for these two waves is a minimum - zero
if the amplitudes are equal.  Although  the crest of wave 1 and the trough of wave 2 move on, the
sum of the two wave disturbances at the same fixed point in space remains zero.  There are other
points where a crest always arrives in step with a crest and a trough with a trough.  At those points
the amplitude of the resultant wave turns out to be the sum of the individual amplitudes.  There are
many other places where the individual waves add to give other values of the resultant amplitude.
The resultant wave at any point depends on the phase difference between the individual waves (as
well as their amplitudes).

Note that interference occurs only at places where both waves are present.  Outside the region
where the waves overlap there is no interference.

It is very important to note that although the two waves add up at any point in space that does
not stop the progress of the waves.  Each wave is quite unaffected by the other!
4-4 ANALYSIS OF TWIN SLIT INTERFERENCE
In Young's experiment with light, the function of the single slit is to ensure that the light falling on
each of the pair of slits is coherent.  Although the light consists of a continuous distribution of
component waves with different frequencies and wavelengths, light reaching each of the twin slits
from the narrow single slit has the same composition.  If the pair of slits is placed symmetrically
then any change in any component of the light, including any change in phase, occurs
simultaneously at both slits.  So the slits behave as coherent sources.   

In the water wave experiment, the waves are much less complex, being essentially composed of
only one frequency component.  Since the original wave had straight wavefronts the waves
emanating from the two slots are exactly in phase at all times.  (Their amplitudes at the slots are also
equal provided that the slots are equally wide.)
Conditions for interference maxima and minima
It is easy to calculate the points in space where maxima and minima in the interference pattern occur.
The analysis is essentially the same for the water waves example and for the Young's twin slits
because both can be treated in two dimensions.  (It is assumed that the Young's slits are very long
compared with their width and separation.)

The wave amplitude at some point P depends on the phase difference between the two
interfering waves.  If the waves are in phase at their sources (the slits in the case of Young's
experiment), then the phase difference at P is determined by the difference in times taken for the
light to get from the sources to P.  That time difference, in turn, depends on the speed of the waves
and the the difference in the distances, called the path difference, travelled by the two waves.  In the
case of light, we can say that the phase difference is proportional to the optical path difference,
which is the product of the actual path difference and the refractive index of the medium.

Optical path length = n  ×  (geometrical path length).
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Since we usually consider Young's experiment in air, the optical and geometrical path
differences are essentially equal.  The path difference for Young's slits is labelled D in figure 4.7.   It
is very important to note that this figure is not to scale.  This analysis is valid only if the screen is a
long way from the slits and if the point P is close the central axis.  If those conditions are satisfied
rays from each of the slits to P are almost parallel and it is said that the experiment satisfies
Fraunhofer conditions.  (The general case in which angles and distances are not so small, Fresnel
conditions,  is very difficult to analyse.)

 P

D

Slit

Slit

Viewing 
screen

Midline

Figure 4.7.  Path difference for Young's twin slits
Not to scale:  In reality the two rays are almost parallel.

If the optical path difference, D, is equal to a whole number (n) of wavelengths then the phase
difference will be n times 2π (corresponding to n wave cycles) and the two waves will be exactly in
phase.  That produces a maximum in the amplitude of the resultant wave.
For a maximum: D = mλ (for m = 0, ±1, ±2, ±3, ...). ... (4.1a)
The value of m is called the order of the bright fringe; the fringe in the middle is the zero-order
fringe.

A minimum in the amplitude will occur if the optical path difference is equal to an odd number
of half-wavelengths.

For a minimum: D = (m +1
2 )λ (for m = 0, ±1, ±2, ±3, ..). ...(4.1b)

Since the irradiance ("intensity") in the interference pattern is proportional to the square of the
wave amplitude, maxima and minima in the intensity occur at the same places as the maxima and
minima in the wave amplitude.  The relation between phase difference φ  and path difference D
which applies at all points (including those between the intensity maxima and minima) is

φ
2π =

D
λ   . ... (4.2) 

These results apply to all kinds of interference between two elementary waves, not just the
Young's slits experiment.
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Location of maxima and minima
The location of points in the interference pattern is most conveniently specified in terms of the
angular position θ  of the point  P (see figure 4.8).  The angular position of P is measured from
the midline between the slits.  

 P

 D 

 d 

 x 

 y 

 θ
 θ

Slit 

Slit 

 Screen

Figure 4.8.   Geometry of the twin slits arrangement
Not to scale: distances along the y-axis are grossly exaggerated.

It can be seen from the diagram that  D ≈ dsinθ so the conditions become:
for a maximum mλ ≈ dsinθ ... (4.3a) 

and for a minimum (m + 12 )λ ≈ dsinθ  . ... (4.3b)

These formulas give the angular positions of the bright and dark fringes in the space beyond
the slits.  They are perfectly accurate only for small values of the angle θ.

If the fringes are viewed on a screen at a long distance from the slits these formulas (4.3) can
be rewritten approximately in terms of the linear position y of the point P on the screen.  First note
that the position coordinate, y, of  P can be written as  y = x tanθ.   For small values of the angle, as
considered here, tanθ  ≈ sinθ,  so the conditions can be rewritten:

for a maximum y ≈
mλ x

d  ... (4.4a)

and for a minimum y ≈
(m + 12)λ x

d     . ... (4.4b)

It follows from these equations that the fringe spacing, the distance between two successive
light fringes or two successive dark lines on the screen, is given by

∆y ≈
λ x
d    . ... (4.4c)

These results illustrate why you can see good fringe patterns only if the range of wavelengths
in the light is small.  The angular positions of the maxima and minima depend on the wavelength, so
if the wavelength doesn't have a well defined value then the fringes are not well-defined either.
Coherence of light sources
In the water wave experiment there is no problem with the coherence of the two sources.  Both sets
of waves are produced by splitting one continuous wave.  On the other hand light from an ordinary
source can normally be described as a superposition of a vast number of elementary waves, which
have a continuous range of frequencies and wavelengths.  These elementary waves can be related to
photons emitted by atoms or molecules in the light source.  Although each elementary wave has a
fairly well-defined frequency, it does not last for long.  Since the emission of elementary waves from
the light source is entirely uncorrelated, the source is said to be incoherent.  If the Young's slits were
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illuminated directly by an ordinary lamp, coherence between individual waves arriving at the two slits
would exist only for extremely short times, and the interference fringe pattern would jump around
very rapidly.  Although an interference pattern would exist it would not stay in one place long
enough to be seen.  The important feature of Young's experiment is the production of long-term
coherence by splitting the wavefronts of each and every elementary wave so that the same phase
relationship between waves from the two slits persists for a relatively long time.  The coherence is
achieved by using the single narrow slit as a common source which illuminates both the twin slits.
Each wave from the first slit produces two coherent parts at the twin slits, so that whatever phase
fluctuations there are among the elementary waves, exactly the same fluctuations occur at both slits.
Laser light
One of the special features of light from a laser is that it is highly coherent.  Therefore Young's
experiment can be done by sending light from a laser directly onto the twin slits, without using the
single slit.  Another advantage of laser light is that it is highly monochromatic - the spread of wave
frequencies (the bandwidth) is much smaller than anything that can be obtained from a lamp and
coloured filters.  In these respects the water wave interference experiment is analogous to Young's
experiment with a laser.
Behaviour of the interference pattern
If the fringes are observed on a screen a long way from the slits (x » d) the irradiance of the fringes
is fairly uniform (figure 4.9).  In that case the maximum irradiance is about four times the irradiance
due to one source alone.  The "missing" intensity from the dark fringes has gone into the extra
intensity in the bright fringes, so that there is no violation of energy conservation.  On a distant
screen the fringes are uniformly spaced and the separation is approximately equal to λx/d .  

Irradiance  

 Angular position, θ
λx/d 

Figure 4.9.  Idealised intensity pattern for Young's twin slits
In this example the screen is a long way from the slits and the width of a slit is much less than a wavelength.

Points to note
• For a fixed wavelength the fringe spacing varies inversely with the separation of the slits.  If
the slits are moved further apart then the fringes get closer together.
• For a fixed separation of the slits, the fringe spacing is proportional to the wavelength
(provided that the approximations stated above are satisfied).
• There is always a bright fringe (order zero) on the central axis.  So when white light is used
the only bright fringe which shows up strongly is the central one because its location does not
depend on wavelength.  Since the fringe spacing depends on wavelength, the total pattern for white
light is a continuous mess of overlapping fringe patterns.  The overall effect is white light in the
middle and "washed-out" coloured fringes on the sides.  
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4-5 THIN FILM INTERFERENCE
Interference patterns can be observed whenever waves from two or more coherent sources come
together.  In Young's experiment the waves came from two separate sources but in thin film
interference, the waves come from one source.  One wavefront is split into two parts which are
recombined after traversing different paths.  Examples of thin film interference occur in oil slicks,
soap bubbles and the thin layer of air trapped between two glass slabs.  Here thin film means a layer
of transparent material no thicker than several wavelengths of light.  

Ray from one
point on the 
source

Rays which
have travelled
different optical
paths

Figure 4.10

Thin film
interference

Figure 4.11

Interference
fringes in a soap

film

When light strikes one boundary of the film, some of it will be reflected and some will be
transmitted through the film to the second boundary where another partial reflection will occur
(figure 4.10).  This process, partial reflection back and forth within the film and partial transmission,
continues until the reflected portion of the light gets too weak to be noticed.  The interference effects
come about when parts of the light which have travelled through different optical paths come
together again.  Usually that will happen when the light enters the eye.*  Thus for example, light

                                                
* When light rays are brought to a focus either by the eye or a lens, there is no extra optical path
difference introduced so the focussing has no effect on the conditions for the location of the
interference fringes.
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reflected back from the top surface of the film can interfere with light which has been reflected once
from the bottom surface and is refracted at the top surface.

The interference effect for monochromatic light, light or dark or somewhere in between, is
determined by the amplitudes of the interfering waves and their phase difference.  The conditions for
a maximum or minimum in the irradiance are the same as before: a phase difference of m(2π) gives a
maximum and a phase difference of (m + 12 )(2π)  produces a minimum.

Change of phase at reflection
A new phenomenon reveals itself here.  A straightforward interpretation of the conditions for
interference maxima and minima solely in terms of optical path difference gives the wrong answer!
Two examples illustrate this point.  In a very thin soap film it is possible to get a film thickness
which is much less than one wavelength.  So the path difference between light reflected from the two
surfaces of the film is much less than a wavelength and the corresponding phase difference will be
almost zero.  A zero phase difference should produce brightness, but the opposite is observed -
when the film is very thin there is no reflection at all!   The explanation is that whenever a light wave
is reflected at a boundary where the refractive index increases, its phase jumps by π or half a cycle.
In the case of the soap film, the light reflected from the first surface, air to soapy water, suffers a
phase change, but light reflected at the water-air boundary has no phase change.  You can observe
this effect yourself in soap bubbles.  Carefully watch the top of a bubble as the water drains away.
As the film gets thinner you will see a changing pattern of coloured fringes.  Just before the bubble
breaks, the thinnest part of the film looks black - indicating no net reflection.

  

Monochromatic light

Central dark fringe in reflected light

Figure 4.12.  Newton's rings

The other example is a thin film interference pattern called Newton's rings which are formed
using a curved glass lens resting on a flat glass slab (figure 4.12).  The thin film is the air between
the lens and the slab.  The important feature is that where the optical path difference is zero, right in
the middle of the pattern where the lens actually touches the slab, there is darkness instead of a
bright fringe.  The dark spot can be explained by saying that there is a phase change of π in the light
reflected at the boundary between air and glass.
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Analysis of thin film interference
The conditions for finding bright or dark fringes in a thin film clearly depend on the angle of
incidence of the light, but a useful approximation can be worked out assuming that the incident light
rays are normal to the surface, or almost so.  In that case the optical path difference between parts of
an elementary wave reflected from the top and bottom surfaces of a film is just 2nb, where b is the
thickness and n is the refractive index (figure 4.13).

n b

There is no extra optical path difference
from here on when these rays are
eventually brought together by a lens or an eye.

Figure 4.13.   Calculating the optical path difference
For near normal incidence, D = 2nb.

To work out the conditions for bright and dark fringes you have to include the effect of phase
changes at reflection.  Each phase change of π has the same effect as the addition of an extra half
wavelength of optical path.
No net phase change at reflection
If there is no phase change at either boundary or a phase change at both boundaries (for example: a
film of water on glass), the conditions for maxima and minima are
for a bright fringe: 2nb = mλ ... (4.5a)

and for a dark fringe: 2nb = 



m +  l2  λ       (m = 0, l, 2, 3, ...). ... (4.5b)

Phase change at one boundary
Where there is a phase change at only one boundary (for example an air film trapped between two
glass plates or a soap bubble) the interference conditions depend on both the thickness and the
phase change at reflection. The conditions are simply interchanged:

for a bright fringe: 2nb = 



m +  l2  λ ... (4.6a)

and for a dark fringe:  2nb = mλ                         (m = 0, l, 2, 3, ...). ...(4.6b)
Notes
• There is no point in trying to memorise these equations.  It is better to work them out when
you need them by combining the conditions expressed in terms of phase difference (equations 4.1a
and 4.1b) with the phase changes at reflection and the relation between optical path and phase
difference.
• It is important to remember that the value of wavelength to be used in these relations is the
wavelength in vacuum (or air).  If you need to know the value of the wavelength, λm, in the medium
with refractive index n it can be calculated using the relation

λ
λm

 = n  .



L4:   Interference 65

Example: fringe patterns in wedges
If two flat glass plates are allowed to touch at one edge and are separated by a small object such as a
thin wire at the opposite edge, the space between the plates contains a wedge-shaped thin film of air
(figure 4.14).   

Monochromatic light

Glass

Glass

Wire

   
Figure 4.14. Interference fringes in a wedge of air

The vertical scale is greatly exaggerated.

When monochromatic light is shone down on to this arrangement, interference fringes will be
observed in the reflected light.   Since the existence of a bright or dark fringe depends on the
thickness of the film at a particular place, fringes will be seen at various places across the air wedge.
The analysis above shows that the spacing of the fringes is proportional to the wavelength.  For a
given wavelength each fringe follows a line or contour of constant thickness in the air film.  If you
follow across the fringe pattern, the thickness of the film will change by λ/2n  as you go from one
fringe to the next.  If the medium in the wedge is air then n  = 1.000, so the fringe spacing
corresponds to a change in thickness of λ/2.  This gives a way of measuring the thickness of the thin
object used to prop the plates apart if you already know the wavelength:  just count the total number
of fringes across the whole wedge and multiply by λ/2. The resolution in this measurement is about
half a wavelength, or better, depending on how well you can estimate fractions of a fringe.
Alternatively, you could use this method and a wire of known diameter to find the wavelength.    
Localisation of the fringes
Although a narrow light source (the single slit)  is needed to produce coherence in Young's
experiment, thin film fringes can be formed using extended light sources, even daylight from the
sky.  The difference is that in thin film interference every incident wavefront, no matter where it
comes from, is split into two wavefronts when it meets the first surface of the film.  When the two
waves meet again they have a definite phase relationship so that interference is seen to occur.  The
phase difference between the waves is locally constant and the fringes are said to be localised.  You
can see that when you look at thin film fringes - they appear to be located in (or just behind) the
film.  
Coloured fringes
If a thin film is illuminated with white light the reflected light will contain a continuous range of
fringe patterns corresponding to the spectrum of wavelengths in the light.  You do not, however, see
the same colours as the pure spectrum like a rainbow. Instead the colours are formed by subtraction
from the white light.  For example, at a place where the film thickness is just right for a dark fringe
in the green you will see white light minus green, which leaves the red end and the blue end of the
spectrum; the resulting visual sensation is purple.  
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Where does the energy go?
There is a puzzle that needs to be answered: what happens to the energy of the light when the
reflected light is removed by interference?  The energy cannot be destroyed so it must go somewhere
else - it is transmitted through the film instead of being reflected.  As in the case of Young's
experiment, the energy is rearranged in space but it is never destroyed.  If you are used to thinking
of energy as a kind of fluid, then that idea may be hard to understand.  However experimental
evidence supports the wave theory, so the "fluid" model of energy needs to be abandoned.  Energy is
not like matter, it does not have to flow continuously through space.  Another way of resolving the
problem is to say that the principle of superposition (just adding things up) works for electric fields
but it does not apply to energy or wave intensity.
4-6 APPLICATIONS OF THIN FILM INTERFERENCE
Testing for flatness
Given a slab with a very accurately flat surface, thin film interference can be used to test the flatness
of the another surface.  (At least one of the two objects needs to be transparent.)  Interference fringes
formed by the thin film of air between the surfaces gives a contour map of variations in the height of
the surface being tested.  The contour interval is equal to half a wavelength of the light in the gap.

Surface being tested

Optically flat surface

Thin film
of air

Incident light

Figure 4.15.  Testing for flatness

Figure 4.16.
Thin film contour

fringes

Blooming of lenses
A common application of thin film interference is in anti-reflection coatings on lenses that are used
in cameras, microscopes and other optical instruments.  A modern lens system may have as many as
ten glass surfaces each with a reflectivity of about 5%.  Without some kind of treatment about half
the light entering such a lens system would be reflected instead of going on to form the final image.
Apart from the loss of brightness involved, multiple reflections in an optical system can also degrade
the quality of an image.

The amount of light reflected from each surface can be greatly reduced using the technique of
blooming, that is the deposition of an anti-reflection coating.  Interference in the reflected light
means that light is transmitted instead of being reflected.  The choice of material for the coating is
important.  Clearly it must be transparent, but it should also result in approximately equal
reflectivities at both surfaces, so that the reflected waves (at a chosen wavelength) can completely
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cancel each other.   Cancellation is achieved exactly when the refractive index of the coating is equal
to the geometric mean of the refractive indices of the air and the glass:  n2 = n1n3  .  See figure
4.17.  However it is not easy to find materials with exactly the right properties, so in practice a
compromise is needed.  Magnesium fluoride, which has a refractive index of 1.38, is often used.

The thickness of the coating is chosen to work best for light of a wavelength near the middle
of the visible spectrum, for example a wavelength of 500 nm corresponding to yellow-green light.  In
that case the lens still reflects some light in the blue and red so it looks purple in reflected light. The
refractive index of the coating is between that of air and glass so there is a phase change at both
reflections.  At the chosen wavelength we require  2n2b  = (m +  l2  ) λ   for no reflection.  With
m = 0, the film thickness is a quarter of a wavelength.

n 1 n 2 n 3

Front surface

Coating

Lens

Reflected rays interfere Transmitted light is brighter

Figure 4.17.  Anti-reflection lens coating

THINGS TO DO 
Look for examples of interference in your environment.  The colours in oil slicks are an example of
thin-film interference.  Next time that you see one make a note of the colours and their sequence.
Are they the same as the colours of the rainbow?  Can you explain the differences or similarities?
Other examples of thin-film interference may be found in soap bubbles, the feathers of some birds
and opals.   

You can make a thin film using two sheets of transparency film like that used on overhead
projectors.   Just place the sheets together and look at the reflected light.  A dark background behind
the sheets will help.  You should be able to see coloured contour fringes which map the thickness of
the air between the sheets.  To enhance the effect place the two sheets on a hard surface and by
rubbing something like a handkerchief over them, try to squeeze the air out of the gap.  What do you
see now?  See what happens when you press your finger on one part of the top sheet.  Does the
angle at which you look make any difference?  Does the angle of the incident light matter?   Look
through the sheets and try to see the interference in the transmitted light; why is that harder to see?

Observe the colour of the light reflected from various camera lenses.  Can you explain the
colour?  Is the colour the same for all lenses?
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QUESTIONS 
Q4.1 Two coherent monochromatic sources produce an interference pattern on a screen.  What happens to the

pattern if
a)  the wavelength is doubled,
b)  the distance between the two sources is doubled?

Q4.2 A Young's double slit experiment consists of two slits 0.10 mm apart and a screen at a distance of
1.0 m.

Calculate the separation of blue light (λ = 400 nm) fringes.
Calculate the separation of red light (λ = 600 nm) fringes.
Sketch the pattern near the centre of the screen.
Can you deduce anything about interference patterns in white light?

Q4.3 Suppose that two coherent sources have a constant phase difference φ  which is not equal to zero.  How
do the conditions for interference maxima and minima change?

Q4.4 If you dip a wire frame into soapy water and take it out, you will see colours in the thin film of water.
If the light source is behind you, you will see thin film interference.

As the water drains away from the top, the colours there will disappear. Can you explain why and
estimate the thickness of the soap film at the top?

Q4.5 The edges of an oil patch on the road appear coloured.  Can you explain why and estimate the thickness
of the film there?

Why is it not possible to see fringes over the whole of the film?
Q4.6 The wavelength of a spectral line was measured using a Young's twin slit set-up with a suitable filter to select

the appropriate line.  The separation of the twin slits was 0.523 mm and the screen was placed 1.22 m from
the slits.  The distance between the two second-order bright fringes on the screen was measured as 5.50 mm.

Calculate the wavelength of the spectral line.  What would happen to the separation of the fringes if the
distance to the screen were doubled?

Q4.7 A lens with refractive index 1.53 is to be coated with magnesium fluoride (refractive index 1.38) in order to
eliminate reflections at the peak sensitivity of the human eye. (See chapter L1.)  How thick should the coating
be?

Discussion questions
Q4 .8 Could Young's twin slit experiment be done with sound waves?  Discuss.
Q4.9 What would happen to the fringe separation if Young's experiment were done entirely inside a big tank of

water?  Explain.
Q4.10 Is it possible that you could observe interference fringes in the light from the two headlamps of a distant

car?  Explain.
Q4.11 Suppose that instead of putting a filter between the lamp and the single slit in Young's experiment, a red

filter were put over one of the twin slits and a blue filter over the other.  What effect would that have on the
fringes?

Q4.12 What happens if you remove the screen with the single slit in figure 4.2 ?
Q4.13 When an oil slick spreads out on water, reflections are brightest where the oil is thinnest.  What can you

deduce from that?
Q4.14 Bloomed lenses look coloured.  Does that mean that the lens coating is made of a coloured material?
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L5 DIFFRACTION
 OBJECTIVES

Aims
From this chapter you should gain an understanding of the process of diffraction and its role in
producing distinctive interference patterns.  You should also aim to understand how the effects of
diffraction can affect and limit the formation of images.  As the classical example of diffraction, you
should be able to describe and explain the Rayleigh criterion and apply it to simple examples.
Minimum learning goals
1. Explain, interpret and use the terms:

diffraction, diffraction pattern, Fresnel diffraction, Fraunhofer diffraction, angular
resolution, Rayleigh criterion, diffraction envelope, principal maximum, secondary maxima,
double slit, diffraction grating.

2. Describe qualitatively the diffraction patterns produced in monochromatic light by single slits,
rectangular apertures, circular apertures, double slits and diffraction gratings.  

3. Describe the interference pattern produced by monochromatic light and a grating in terms of
the interference pattern produced by a set of line sources modulated by a diffraction envelope.

4. State and apply the formulas for the angular widths of the central maxima in the Fraunhofer
diffraction patterns of a single slit and a circular hole.

5. State the Rayleigh criterion, explain its purpose and apply it to simple examples.
6. Describe how wavelength, slit width, slit spacing and number of slits affect the Fraunhofer

diffraction patterns produced by multiple slits and gratings.
7. State and apply the formula for the angular positions of maxima in the Fraunhofer diffraction

patterns produced by multiple slits and gratings.

 PRE-LECTURE

5-1 SHADOWS
In the ray model we suppose that when light travels through a homogeneous medium it moves along
straight lines.  That observation is often called the law of rectilinear propagation.  The existence of
shadows is good evidence for the ray model of light.  When light from a small (or 'point') source
goes past the edges of an opaque object it keeps going in a straight line, leaving the space behind the
object dark (figure 5.1).

Figure 5.1.   Straight line propagation of light
A small source of light produces sharp shadows.
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When the light reaches some other surface the boundary between light and dark is quite sharp.
(On the other hand if the light comes from an extended source the shadow is not so sharp - there is a
region of partial shadow surrounding the total shadow.)

It was not until the about the beginning of the nineteenth century that scientists noticed that
shadows are not really perfectly sharp.  Looked at on a small enough scale the edge of a shadow is
not just fuzzy, as you might expect for an extended source of light, but there are also light and dark
striations or fringes around the edge of the shadow.  Even more remarkable is the slightly later
discovery that there is always a tiny bright spot right in the middle of the shadow cast by a circular
object (figure 5.2).  The fringes and the bright spot cannot be understood in terms of the ray model -
the explanation lies in the wave model.  According to the wave theory, the fringes are formed by the
diffraction or bending of light waves around the edges of objects and the subsequent interference
of the diffracted waves.  The diffraction of water waves at a hole in a barrier was shown in the video
lecture on interference (L4) and it is sketched in figure 4.4.

One of the effects of diffraction is the production of interference or fringe patterns.   Although
these patterns are actually interference patterns in the same sense as those we have already discussed,
when they are produced by the bending of light around obstacles or apertures (holes) they are called
diffraction patterns.

Figure 5.2.   Shadow of a small circular object
The edges of the shadow contain fringes and there is a small bright spot in the middle.

Young's twin slits experiment shows that light does not always travel along straight lines.  You
can see that it must bend somewhere by looking at figure 5.3.  Since there is light at the middle of
the screen but no straight through path from the source to the screen, the light which gets there must
somehow be going around corners.  What must be happening is that after the light reaches the first
slit it then spreads out so that some of it reaches the other two slits.  Then, having passed through
those slits it spreads out again in many directions until it reaches the screen.  This behaviour is
typical of waves, but not of particles.

Light 
source

First
slit Pair of

slits
Screen

Figure 5.3.   Arrangement for Young's experiment
Light cannot be travelling in a straight line all the way from the source to the screen.
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The connection between waves and diffraction is much more noticeable for sound than it is for
light.  The observation that sound easily travels around corners is strong evidence for the wave
nature of sound.

 TEXT & LECTURE

5-2 HUYGENS' CONSTRUCTION
A way of describing how diffraction occurs was invented by Christian Huygens (1629-1695) in
about 1679 and was modified much later into the form we now use by Augustin Fresnel (1788 -
1827).  Huygens' construction is a method for locating the new position of a wave front.  Starting
from a known wavefront, we imagine each point on the wavefront to be a new source of secondary
wavelets.  The wavelet from each point then spreads out as a sphere (which appears as a circle in
two-dimensional diagrams).  After a certain time the new position of the original wavefront is
defined by the boundary or envelope of all the secondary wavelets.  Huygens construction for a
plane wave going through a slit is shown in figure 5.4;  after it has passed through the hole, the
wavefront is no longer plane, but has curved edges.  The result of Huygens' construction is
significantly different from the ray model in that it shows light waves spreading into the region of
the geometrical shadow.   You should notice that opposite the slit the wavefront is still plane; it bends
only at the edges.   This bending effect is noticeable only on a scale comparable with the wavelength
- for a very wide hole comparatively little of the wavefront bends around the edges.

1 2 3 4 5

Figure 5.4.   Huygens' construction
Five stages in the progress of a wavefront through a slit.  The diagrams show the construction for three equal

time intervals after a plane wave reaches the slit, travelling left to right.  At any stage the new wavefront is the
boundary of all the wavelets used in the construction.

Although the Huygens construction 'explains' how new wavefronts are formed, it does not
predict the wave's amplitude; other methods are needed for that.  The construction does however
contain a clue about the strength of the waves.  If you look at the straight-through wave in figure 5.4
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you will see that there are many wavelets, but on the sides relatively few wavelets appear, which
would seem to suggest, correctly, that the diffracted wave is weaker on the sides.
5-3 PRODUCING DIFFRACTION PATTERNS

Light source

Opaque screen
 with aperture in the middle Viewing screen

Diffraction pattern

Figure 5.5.  Producing a diffraction pattern
(Not to scale)

Details of the distribution of light over the diffraction pattern depend on the distances of both
the source and the screen from the diffracting aperture.  The general situation (figure 5.5), known as
Fresnel diffraction, can be mathematically very complex.  However, calculations are greatly
simplified if both the source and the screen are at very large distances from the aperture (i.e. if those
distances are much greater than the diameter of the aperture).  We will deal quantitatively only with
this situation, which is known as Fraunhofer diffraction.

Fraunhofer conditions can be achieved in practice by using two lenses (figure 5.6).  The first
lens ensures that the wavefronts arriving at the aperture will be plane (with parallel rays) and the
second lens brings beams of diffracted light together to form an interference pattern on the screen.

f A f B

A B
Light source

Screen

Viewing
screenAperture

Figure 5.6.  Producing Fraunhofer diffraction
Lens A ensures that the wavefronts which arrive at the aperture are plane.  In order to see what the diffraction

pattern at infinity would be like, lens B is used to produce its image on the screen.
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5-4 DIFFRACTION AT A SINGLE SLIT
You will recall that light consists of a superposition of many elementary waves, with a wide range of
frequencies. In the simple theory of diffraction we deal with one frequency at a time.  The diffraction
of a complex beam of light is then described in terms of what happens to each of the component
waves with different frequencies.

The simplest case of Fraunhofer diffraction is that for a long narrow slit in an opaque screen.
The interference pattern consists of a set of light and dark parallel fringes (figure 5.7).

Figure 5.7.   Single slit diffraction pattern
Figure 5.8 shows how the diffraction by a slit is studied using Fraunhofer conditions.  The

first lens ensures that the wavefronts arriving at the aperture will be plane and the second lens
focusses the light onto the screen.

P0

Slit
Lens B Screen

P

O

Lens A

Diverging
wavefronts

Plane
wavefronts

Complex wavefronts
not shown

Source

Figure 5.8.  Fraunhofer diffraction by a single slit
After passing through the slit light waves spread out in all directions.  The second lens brings parallel groups
of rays to a focus on the screen.  If there were no diffraction there would be only one such focus (P0) for each

source point O.

The wavefronts arriving at the slit are plane, but because of diffraction, the wavefronts on the
other side will not be plane.  Light arriving at any point in the aperture has a fixed phase relationship
to light from the same part of the source arriving at any other point in the aperture.  The simplest
case is to imagine an elementary plane wavefront arriving parallel to the slit as shown in figure 5.8.
Since all points on a wavefront have the same phase we can imagine the aperture filled with many
tiny coherent sources.  When the light from all of these sources comes together at various points on
the screen an interference pattern will be seen.  The brightness at any point will depend on the phase
differences among all the secondary waves arriving there and those phase differences will depend on
the optical paths travelled by the different waves.   Path differences can be calculated using rays
which leave the slit parallel to each other,  so that they would eventually meet at infinity were it not
for the presence of the second lens.  Since the lens itself introduces no additional optical path
difference, calculations can be done on the assumption that the rays meet at infinity.  
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The following argument, given in the video lecture, shows how to work out the condition for a
minimum in the interference pattern.  Consider rays coming from various coherent points spread across
the slit (figure 5.9).

P0a 

Slit
Lens B

Screen
Figure 5.9.  Formation of the central bright fringe

All these rays have the same optical path length.

All the rays parallel to the axis will be focussed at P0.  Although the geometrical path lengths
of the rays are obviously different, the optical paths from different points across the slit to the point P0
are all equal.  That is so because the longer paths outside the lens are compensated by shorter optical
paths of the rays within the lens.  Rays from the outside of the slit go through more air but less glass
than rays near the middle of the lens.  So all the light arriving at P0 is in phase, giving a bright region
there.

P0a 
θ 

θ 
P1θ 

a 
2

Enlarged
view

D
D

Figure 5.10.  Condition for a minimum - Fraunhofer diffraction

For other points on the screen the phases for light arriving along a parallel group of rays are all
different, but it is fairly straightforward to work out where there will be complete cancellation.  Pick
two parallel rays, one leaving from the top of the slit and the other from a point halfway across it
(figure 5.10).  Both rays leave the slit at an angle θ to the axis.  If the angle θ is chosen so that the
path difference between these two rays is some odd multiple of half a wavelength (D = λ/2, 3λ/2,.. etc)
they will interfere to produce a minimum in the irradiance at the screen.

Any other pair of rays half a slit width apart and leaving at angle θ will also interfere to give a
minimum.  We can choose similar pairs of rays until the whole aperture has been covered.  Since all
pairs produce a minimum there will be a dark region at P1.  From the small triangle in the diagram it
can be seen that the path difference for every pair of rays is equal to (a/2)sinθ.   Finally equate this
expression with the value of D (above) needed for a minimum.  
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The condition for an interference minimum is that

sinθ  =  
mλ
a        for   m  = ±1, ±2, ±3  ...  . ... (5.1)

 -20  -10  0  10  20
 Angular position  θ/ degrees

 Irradiance

 Principal maximum

 Secondary maxima

Figure 5.11.  Single slit diffraction pattern - Fraunhofer conditions
A plot of the intensity of the light against position on the screen is shown in figure 5.11.

Several features of the diffraction pattern are worth noting.  
• The angle between the central peak and the first minimum (m = 1) is given by

sinθ = 
λ
a    .

So the widest diffraction patterns are produced by the narrowest slits.  If the slit is only one
wavelength wide the angular position of the first minimum would be 90° giving an angular
separation of 180° between the zero intensity positions -  so the diffracted light spreads out in
all directions.  On the other hand if the slit is wide, the angle of the first minimum is small and
diffraction effects may be hard to see.

• The principal maximum is roughly twice the width of the secondary maxima.  You can see that
by putting sinθ ≈ θ  in equation 5.1 and comparing the change in angular position going from
m = 1 to m = -1 with the change in going from m  = 1 to m = 2, for example.

• The width of the diffraction pattern depends on wavelength.  The pattern for red light is wider
than that for blue light.

• The intensities of the secondary maxima are very much less than the intensity of the principal
maximum.

5-5 DIFFRACTION BY A CIRCULAR APERTURE
In practice the most important example of diffraction produced by a single aperture is that for a
circular hole.  Most optical instruments have circular apertures or lenses that act as circular apertures,
so whether we wish it or not we will get diffraction effects.

For Fraunhofer diffraction at a circular hole, the plot of intensity against position on the screen
(figure 5.12) is similar in its general shape to that for a single rectangular slit.  However it differs
from the single slit pattern in the following ways.
• The diffraction pattern is a circular patch of light (called the Airy disc) surrounded by rings of

light.
• The angle between the principal maximum and the first minimum is about 20% greater than

that for a slit of the same width:

sinθ = 1.22 
λ
a   . ... (5.2) 

• The spacings between adjacent minima are not as uniform as those for the slit.
• The intensities of the secondary maxima are smaller.
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 Angular position θ

 0

 Irradiance

 min θ

Figure 5.12.  Diffraction pattern for a circular aperture
At a large distance from the hole (Fraunhofer conditions) the first minimum in the irradiance

occurs at an angular position sin θmin = 1.22 λ/D.  The secondary maxima are less bright than
those for a slit.

Example
It is important to realise the size of the diffraction pattern for an average sort of lens, say 50 mm in
diameter, which acts as a circular aperture whenever it is used to form images.  Consider a typical
visible wavelength of 500 nm and calculate the angle between the central maximum and the first
minimum.

sinθ = l.2 λD 

=
1.2 ×  500  ×  10-9  m

 50  ×  10-3  m
   = 1.2 × 10-5.

Since θ is small,  sin θ   ≈ θ  and θ  =  1.2 × 10-5 rad or  0.0007°.

5-6 YOUNG'S DOUBLE SLIT
Young's classic interference experiment with the two slits has already been described (§§4-2, 4-4)
and quoted as evidence for the diffraction of light (§5-2).  Detailed descriptions of the two-slit
interference pattern involve the width of a slit, a, and the separation between the slits, d (figure 5.13).
Note that d > a.

d

a a

Figure 5.13

 Dimensions of a
double slit

A simple analysis of the experiment assumed that both the sources were very narrow - much
less than a wavelength wide (a << λ).  In practice however real slits are not that narrow and the
interference pattern depends on the width of the slits as well as their separation.  The kind of
interference pattern produced is illustrated in figures 5.14 and 5.15.  

Figure 5.14.   Diffraction pattern for a pair of slits
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For Fraunhofer conditions the plot of irradiance against angular position on the screen shows
a pattern of almost equally spaced fringes with different brightnesses (figure 5.15).  The maximum
irradiance occurs in the central bright fringe, at position θ  = 0.  Notice how the fringes occur in
groups, with the brightest fringes in the middle group.

 Angular position

 Irradiance

Figure 5.15.  A typical two-slit interference pattern - Fraunhofer conditions
Figure 5.16 shows a comparison between the interference patterns for one and two slits.  You

may recall from chapter L1 that the maximum intensity for two identical coherent sources should be
four times (not twice) the intensity for one source.  That result posed a puzzle about conservation of
energy.  Energy or power is distributed differently in the two cases.  Although the peak of the two-
slit curve is four times higher than that of the single-slit curve, there are places where there is no light
at all.  The total power is represented by the areas under the graphs and, as expected from
conservation of energy, the area under the two-slit curve is twice the area under the one-slit curve.

 -15  -10  -5  0  5  10  15

 Angular position/degrees

 Irradiance

 -15  -10  -5  0  5  10  15

One slit
a = 5λ

 Two slits

 d = 20 λ
 a = 5λ

Figure 5.16.    Irradiance and total power for one and two slits
Each slit is 5 wavelengths wide. These graphs are plotted on the same scale.  Two identical slits give a

maximum irradiance equal to 4 times the maximum irradiance from one slit.  The total power, represented by
the area under the curve, is only twice as large.

The interference pattern in Young's experiment can be described as a combination of the
interference pattern for two very narrow slits and the pattern produced by one slit of finite width.
When the mathematical forms of these two patterns are multiplied together we get the shape of the
observed two-slit pattern.  The spacing of the fringes is determined by the separation of the slits but
their brightness is influenced by the width of a slit.  Figure 5.17 shows how the interference pattern
of two slits with zero width is modulated by the pattern of a single slit.
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Ideal two slit 
interference
pattern.  

 Slit width = 0.

Single slit 
diffraction pattern

 Slit width = a

Double slit pattern
 Separation
d = 5a

× 

= 

 Irradiance

 Angular position

Missing
order

Figure 5.17.   Young's slits pattern as a combination of two patterns
The ideal two-slit interference pattern (top graph) multiplied by the diffraction pattern for one slit (middle)

yields the double slit diffraction pattern (bottom).  The vertical scales in these graphs are not the same.

Since the description of the two-slit interference is just a combination of two simpler cases that
we have already considered, it is to be expected that the results we got earlier should carry over.  The
locations of the interference maxima are still given by equation 4.3.  For the

mth order maximum: sinθ  =
mλ
d    ;    m  = 0, ±1, ±2, ...  . ... (5.3)

And the places where there would be a zero in the single slit pattern are still dark; for a non-zero
integer value of n , there is a minimum when

sinθ  =
nλ
a    ;   n  = ±1, ±2, ...   . ... (5.4)

If you look again at figure 5.17 you can see that in the place where the fifth order fringe
(m = 5) ought to be there is nothing (remember to count the central fringe as number 0).  That
happened because the condition for the first zero (n = 1) in the single slit pattern coincided with the
position of the fifth bright fringe in the two-slit pattern.  By comparing the two conditions (equations
5.3 and 5.4) you can see that the missing fringe was caused by the fact that the slit spacing in the
example was chosen to be exactly five times the slit width.  Other missing orders may be caused by
similar coincidences.

Figure 5.18 shows how the single slit pattern forms an envelope to the double slit pattern for
some different values of the slit width but the same slit spacing.  You could say that the two-slit
interference pattern has to be squeezed inside the single slit pattern (figure 5.18).
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 Irradiance

 a = λ

 a = 10 λ

 Diffraction envelope

 Diffraction envelope

 Diffraction envelope

a  =  5  λ

Figure 5.18  Effect of slit width on the fringe pattern
Although widening the slits lets more light through and increases the overall brightness, these graphs have
been normalised to have the same maximum irradiance.  Making both slits wider reduces the width of the

diffraction envelope and the relative brightness of the outer fringes.

5-7 RESOLUTION OF IMAGES
The theory of diffraction shows that a point source of light or an object point cannot possibly
produce a perfect point image even in an optical system which is free of aberrations.  The wave
nature of light places a fundamental limitation on the quality of an image.  Resolving power is a
somewhat loose term which refers to the ability of an optical system to distinguish fine detail in an
image.  It can be illustrated by considering how one might distinguish between the images of two
stars in a telescope.   Stars are so far away that they can be considered as point objects, and the fact
that they often appear to have finite sizes is due to diffraction.  Although a refracting telescope
normally contains several lenses, the concept of resolving power can be understood by representing
the system as one lens (the objective lens), and an aperture as shown in figure 5.19.  The centres of
the real images of the stars are formed in the focal plane of the objective lens and are separated by an
angle θ which is equal to the angle subtended by the two stars at the objective.  (The images are
viewed using the telescope's eyepiece.)
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θ  θ  

 Lens and
diffracting

aperture

Focal
plane

 Irradiance

Two distant
point sources 

Figure 5.19.  Resolving the images of two point sources
The sources are incoherent so the images are two separate diffraction patterns.

(Note: the figure is not a  ray tracing diagram.)

If the angular separation θ is so small that the images are effectively on top of each other, it
will not be possible to recognise that there are two separate images.  The angular resolution of an
instrument is the smallest angular separation that can be distinguished.  Although the decision about
the actual value of an angular resolution may depend on the skill of the observer, the relative
brightness of the sources and other factors, it is useful to have a generally agreed definition of when
the two images of two incoherent point sources can be resolved.  The criterion generally used was
proposed by Lord Rayleigh (1821-1894):  the two point sources are just resolved if the central
maximum of one image coincides with the first minimum of the other.

For a circular aperture and Fraunhofer diffraction, you can see from equation 5.2 that the
Rayleigh criterion is satisfied when the angular separation of the two point sources has the value
θmin given by

sinθmin = 
1.22λ

a    

where a is the diameter of the aperture.  In  practice, since the angles involved here are always very
small we can put sinθ = θ and since 1.22 is near enough to 1, the Rayleigh criterion for a circular
aperture is that

 angular resolution =
λ
a      .

 min sin θ      =  λ / d 
 Rayleigh criterion

 min θ  =  2θ

Figure 5.20.  Rayleigh criterion for two point sources
The pair of images on the left is easily resolved.  The two images on the right are just resolved according to

Rayleigh's criterion.
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It follows that to improve resolving power one can use a shorter wavelength, which is usually
not possible, or a larger lens which gives a larger aperture.   That is one of the reasons that modern
astronomers need large telescopes.

 The discussion above applies directly to telescopes and other optical instruments which are
used to look at incoherent sources.  However the details do not necessarily carry over to all kinds of
microscopy, because the illumination of adjacent parts of a specimen may be at least partially
coherent.  The analysis of such cases is more difficult, but the general idea that resolution can be
improved by using a larger aperture or a shorter wavelength remains valid.
5-8 DIFFRACTION GRATINGS

 1 slit

 2 slits

 4 slits

 8 slits

 Angular position

 Irradiance

Figure 5.21. Multiple slit fringe patterns
These graphs have been normalised to have the same value of the central maximum in order to emphasise the

effect on the fringe width.  In fact using N slits instead of one slit makes the central maximum N2 times
brighter.  In the examples above the separation of the slits is 5 times the slit width so that the fifth order fringe

is missing.

Now that you have seen how a double slit pattern is formed, it is interesting to ask what
happens if the number of equally spaced slits in a Young's experiment is increased.  There are two
main effects.  Firstly, and fairly obviously,  the whole diffraction pattern becomes brighter because
more light gets through.  The second effect is more surprising - the bright fringes get sharper!
Although the positions of maximum irradiance remain unaltered the width of each bright fringe
decreases as the number of slits increases.   (A third, but less noticeable, effect is that some new
weak fringes appear in between the principal maxima.)
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The reason that the principal fringes stay in the same locations is that the conditions for
maximum irradiance are still essentially the same - the optical path difference from adjacent slits to
the point on the screen needs to be a whole number of wavelengths and that condition does not
depend on how many pairs of slits you have.  On the other hand, if there are many slits then the
condition that all possible adjacent pairs of slits must give the same path difference is much tighter.
Consider a point on the screen just a little bit away from a peak.  The corresponding points on the
wavefront at two adjacent slits do not have the exactly right phase difference for a maximum and the
phases of the waves from other slits will be even more out of step.  The more slits you have the
worse the matching of the phases will be.

Although the fringes are much sharper their positions are still described by the same Young's
slits equation (5.3).

The sharpening of the fringes is exploited in the diffraction grating, a device which consists
of a very large number of narrow, uniformly spaced, parallel slits (typically 1200 slits per
millimetre).  There are two kinds of grating.  A transmission grating is made by cutting grooves in
a material such as glass;  the grooves are effectively opaque strips and the unruled portions are the
slits.   A reflection grating works by reflecting light from many parallel mirror-like strips.

Since the fringe spacing depends on wavelength and because the bright fringes are very
sharply defined, the diffraction grating can be used in a spectroscope or spectrograph to spread a
beam of light into components with different frequencies.  The grating is far superior to the prism
because it can be made to give a much greater angular separation of the spectrum.  If the slit
separation is very small (say 10-6 m) and if there are many slits (say 106), then a line spectrum will
have very sharp, clearly-separated interference maxima.

THINGS TO DO 
• The grooves on an LP record or (better) a compact disc can function as a reflection diffraction
grating.  Look at various sources of light reflected from the surface of a disc.  How many orders of
the diffraction pattern can you see?  Can you estimate the spacing of the grooves?
• You can use a piece of finely woven cloth as a kind of two-dimensional transmission grating.
Look through the cloth at a mercury or sodium street light.

QUESTIONS 
Exercises
Q5 .1 Estimate the width of the central maximum of a single slit diffraction pattern which appears on a screen 1.0  m

away from a slit of width 0.10 mm, illuminated with light of λ = 500 nm.
Q5.2

Light source

Screen

?

a 
a 2

Using the result that the angle between the centre and the first minimum of a single long slit diffraction
pattern is sin θ = λa  , can you predict what the diffraction pattern of the rectangular aperture in the figure will
look like?
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Q5.3 Estimate the angular width of the central maximum of the diffraction pattern produced by a circular aperture 2.0
mm in diameter.  Take λ = 500 nm.

Q5.4 The two headlights of a distant approaching car are l m apart.  Make a rough estimate of the distance at which
the eye can resolve them.  Take a pupil diameter of 5 mm and use a typical visible wavelength, say λ  =  500
nm.

Q5.5 A grating with 400 grooves per millimetre is used to examine the spectrum of a source of light.
a) Calculate the angle between the first order maxima for red light with λ = 700 nm and violet light with

λ = 400 nm.
b) Do the same for the two components of the sodium-D line which have wavelengths 589.0 nm and

589.6 nm.
Discussion questions
Q5.6  Can you explain why the centre of the diffraction pattern for a circular obstacle always contains a bright

spot?
Q5.7 A grating will not be of much use for producing a clear spectrum if the first order fringes of some part of the

spectrum overlap the second order fringes of some other part.  Discuss.  How should the grating be constructed
in order to avoid the problem?

Q5.8 Why is diffraction more noticeable for sound than for light?
Q5.9 Light waves do not bend noticeably around buildings, but radio waves which are also electromagnetic waves do

diffract around buildings.  Discuss.
Q5.10 What do you think of the claim that you can't see an interference pattern in a Young's experiment if the

separation of the slits is less than half a wavelength?
Q5.11 What would you see in a Young's two-slit experiment with white light?
Q5.12 Why is a grating better than just two slits in an experiment to measure wavelength?

APPENDIX 
MATHEMATICAL DESCRIPTION OF THE DIFFRACTION PATTERNS
The shape of the Fraunhofer intensity distribution curve for a grating with N slits is described by the
equation:

I = A  



sinα

α
  

2 




sin(Nβ)

sinβ  
 2

where α = πa
λ

   sinθ  

which is half the phase difference between one edge and the middle of a slit

and β = πd
λ

   sinθ  

which is half the phase difference between corresponding points on adjacent slits.  A is a constant
which represents the amplitude of the incoming wave - assumed to be the same at all slits.

The single slit diffraction pattern (N = 1)  and the Young's double slit case (N  = 2) are also
described by the same equation.

The envelope (single slit pattern) is described by the term 



sinα

α
  

2 
while the idealised pattern

for N slits of zero width is given by the term  



sin(Nβ)

sinβ   
2 

.

The results for the zeros in the diffraction envelope (equation 5.1) and the condition for the
maxima (equation 5.3) can be obtained from the equation above.
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L6 POLARISATION
 OBJECTIVES

Aims
Once you have studied this chapter you should understand the concepts of transverse waves, plane
polarisation, circular polarisation and elliptical polarisation.  You should be able to relate this
understanding to a knowledge of methods for producing the different types of polarised light in
sufficient detail so that you can explain the basic principles of those methods.
Minimum learning goals
1. Explain, interpret and use the terms:

polarised light, unpolarised light, randomly polarised light, linear polarisation (plane
polarisation), partially polarised light, polarising axis, polariser, ideal polariser, analyser,
crossed polarisers, Malus's law, circular polarisation, elliptical polarisation, birefringence
(double refraction), dichroic material, dichroism, optical activity, quarter-wave plate,
polarising angle (Brewster angle).

2. Describe how plane polarised light can be produced by dichroic materials, by birefringent
materials, by reflection and by scattering.  

3. State and apply Malus's law.
4. Explain how circularly or elliptically polarised light can be regarded as a superposition of

plane polarisations.
5. Describe how circularly polarised light can be produced from unpolarised or plane polarised

light.
6. Describe the phenomenon of optical activity and describe one example of its application.
Extra Goals
7. Describe and discuss various applications of polarised light and explain how they work.

 TEXT

6-1 PLANE OR LINEAR POLARISATION
In light and all other kinds of electromagnetic waves, the oscillating electric and magnetic fields are
always directed at right angles to each other and to the direction of propagation of the wave.  In other
words the fields are transverse, and light is described as a transverse wave. (By contrast sound
waves are said to be longitudinal, because the oscillations of the particles are parallel to the direction
of propagation.)   Since both the directions and the magnitudes of the electric and magnetic fields in
a light wave are related in a fixed manner, it is sufficient to talk about only one of them, the usual
choice being the electric field.  Now although the electric field at any point in space must be
perpendicular to the wave velocity, it can still have many different directions; it can point in any
direction in the plane perpendicular to the wave's direction of travel.

Any beam of light can be thought of as a huge collection of elementary waves with a range of
different frequencies.  Each elementary wave has its own unique orientation of its electric field; it is
polarised (figure 6.1).  If the polarisations of all the elementary waves in a complex beam can be
made to have the same orientation all the time then the light beam is also said to be polarised.  Since
there is then a unique plane containing all the electric field directions as well as the direction of the
light ray, this kind of polarisation is also called plane polarisation.  It is also known as linear
polarisation.  However, the usual situation is that the directions of the electric fields of the
component wavelets are randomly distributed; in that case the resultant wave is said to be randomly
polarised or unpolarised.
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Figure 6.1.  A polarised elementary wave
The picture shows a perspective plot of the instantaneous electric field vectors which all lie in the same plane

(shaded).  Every such elementary harmonic wave is plane polarised.

It is quite common to find partially polarised light which is a mixture of unpolarised
(completely random polarisations) and plane polarised waves, in which a significant fraction of  the
elementary waves have their electric fields oriented the same way.
Components of polarisation
Since electric field is a vector quantity it can be described in terms of components referred to a set of
coordinate directions.  In the case of polarised waves we can take any two perpendicular directions in
a plane perpendicular to the wave's direction of travel.   An electric field E which makes an angle α
with one of these directions can then be described completely as two components with values Ecosα
and Esinα .  We can think of these components as two independent electric fields, each with its own
magnitude and direction, which are together equivalent in every respect to the original field.  So any
elementary wave can be regarded as a superposition of two elementary waves with perpendicular
polarisations.

x

yE

E

is
equivalent

to

y

x

E

α

Figure 6.2.  Components of the instantaneous electric field
In just the same way, any plane polarisation can be described in terms of two mutually

perpendicular component polarisations.  In the schematic diagrams that we use to represent
polarisation such a line can be drawn as a double-headed arrow, representing the two opposite
directions that a plane polarised wave can have at any point.  The instantaneous value of an electric
field (which has a unique direction at any instant of time) will be shown as a single-headed arrow.
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Figure 6.3  Components of the polarisation

Polarisers and Malus's law
A ideal polariser, or polarising filter, turns unpolarised light into completely plane polarised light.
Its action can be described in terms of its effect on elementary waves with different polarisations;
waves whose polarisation is parallel to an axis in the polariser, called its polarising axis, are
transmitted without any absorption but waves whose polarisation is perpendicular to the polarising
axis are completely absorbed.  An elementary wave whose polarisation is at some other angle to the
polarising axis is partly transmitted and partly absorbed but it emerges from the other side of the
polariser with a new polarisation, which is parallel to the polariser's axis.  This can be described in
terms of components of the original wave.  Since we can use any reference directions for taking
components we choose one direction parallel to the polariser's axis and the other one perpendicular
to it.  If the angle between the original polarisation and the polariser's axis is θ, then the component
parallel the the polariser's axis, which gets through, has an amplitude of E0 cosθ.  Since the other
component is absorbed, the wave which emerges has a new amplitude E0 cosθ and a new
polarisation.   Since the irradiance or "intensity" of light is proportional to the square of the electric
field's amplitude,

Iout = Iin cos2θ. ...(6.1)
This result is known as Malus's law.

θIncident linearly
polarised light

Polarising axis

Emerging light is
polarised parallel to
the axis of the polariser

Polariser

Figure 6.4.  Effect of a polariser on plane polarised light

Many practical polarisers do not obey Malus's law exactly, firstly because they absorb some
of the component with polarisation parallel to the polarising axis and secondly because some of the
component polarised perpendicular to the axis is not completely absorbed.

Malus's law also describes the action of an ideal polariser on unpolarised light.  Unpolarised
light is really a vast collection of polarised elementary waves whose polarisations are randomly
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spread over all directions perpendicular to the wave velocity.  Since these elementary waves are not
coherent, their intensities, rather than their amplitudes, can be added, so Malus's law works for each
elementary wave.  To work out the effect of the polariser on the whole beam of unpolarised light we
take the average value of Iin cos2θ  over all possible angles, which gives

Iout = 1
2  Iin .

Polarising axis

Emerging light is
polarised parallel to
the axis of the polariser

Polariser

Incident unpolarised light

Figure 6.5.  Effect of an ideal polariser on unpolarised light

If we send initially unpolarised light through two successive polarisers, the irradiance
(intensity) of the light which comes out depends on the angle between the axes of the two polarisers.
If one polariser is kept fixed and the axis of the other is rotated, the irradiance of the transmitted light
will vary.  Maximum transmission occurs when the two polarising axes are parallel.  When the
polarising axes are at right angles to each other the polarisers are said to be crossed and the
transmitted intensity is a minimum.   A pair of crossed ideal polarisers will completely absorb any
light which is directed through them (figure 6.6).  Note that the polarisation of the light which comes
out is always parallel to the polarising axis of the last polariser.

Figure 6.6.  Crossed polarisers
Each polariser on its own transmits half the incident irradiance of the unpolarised light.

So far we have considered a polariser as something which produces polarised light.  It can
also be considered as a device for detecting polarised light.  When it is used that way it may be
called an analyser.  For example, in the case of crossed polarising filters above, you can think of the
first filter as the polariser, which makes the polarised light, and the second filter as the analyser
which reveals the existence of the polarised light as it is rotated.
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6-2 CIRCULAR POLARISATION
Plane polarisation is not the only way that a transverse wave can be polarised.  In circular
polarisation the electric field vector at a point in space rotates in the plane perpendicular to the
direction of propagation, instead of oscillating in a fixed orientation, and the magnitude of the electric
field vector remains constant.

Looking into the oncoming wave the electric field vector can rotate in one of two ways.  If it
rotates clockwise the wave is said to be right-circularly polarised and if it rotates anticlockwise the
light is left-circularly polarised.

0 T/4T/8 T/2 3T/4 T3T/8 5T/8 7T/8

Right
polarised

Left
polarised

Time

Figure 6.7.  Circularly polarised waves
The diagrams show the electric field vector of an elementary wave at successive time intervals of 1/8  of a wave

period, as the wave comes towards you.

Actually circular polarisation is not anything new.  A circularly polarised elementary wave can
be described as the superposition of two plane polarised waves with the same amplitude which are
out of phase by a quarter of a cycle (π/2) or three quarters of a cycle (3π/2).  Figure 6.8 shows how.

 +  +  +  +  +

= = = = = 

 t =3T/8 t = 0  t = T/8  t = T/4  t = T/2

Figure 6.8  Circular polarisation as the superposition of two linear polarisations

The illustrations show the two linearly polarised electric fields with the same amplitude plotted
at intervals of one eighth of a wave period.  When these are combined the resultant electric field
vector always has the same magnitude, but its direction rotates.  Note that the amplitude of the
circularly polarised wave is equal to the amplitude of each of its linearly polarised components. Its
period and frequency are also identical with those of the component waves.



L6:   Polarisation 89

There is an interesting symmetry between the concepts of linear and circular polarisation.  Not
only can circular polarisation be described in terms of linear polarisation, but linear polarisation can
be described as the superposition of two circular polarisations!  In figure 6.9, left and right circularly
polarised waves with equal amplitudes are added to produce one linearly polarised wave.  Note that
in this case the amplitude of the linearly polarised wave is the sum of the component amplitudes.

 +  +  +  +  +

= = = = = 

 t =3T/8 t = 0  t = T/8  t = T/4  t = T/2

Left
circular

Right
circular

Linear

= 

 +

Figure 6.9.  Superposition of two circular polarisations to give a linear polarisation

Elliptical polarisation
Circular polarisation can be regarded as a superposition of two linear polarisations with the same
amplitude and just the right phase difference, π/2, 3π/2 etc.   In general the combination of two
linearly polarised elementary waves with the same frequency but having unequal amplitudes and an
arbitrary value of the phase difference, produces a resultant  wave whose electric vector both rotates
and changes its magnitude.  The tip of the electric field vector traces out an ellipse so the result is
called elliptical polarisation (figure 6.10).  Circular polarisation is thus a special case of elliptical
polarisation.

Figure 6.10.  Elliptical polarisation
In this example two component waves have a phase difference of a quarter cycle and different amplitudes.  The

total electric field vector changes size as it rotates.



L6:   Polarisation 90

We have already seen that the resultant of two linear polarisations with zero phase difference
is also a linear polarisation.  Another special case is the combination of two elementary linearly
polarised waves whose phase difference is exactly π.  The resultant is a linear polarisation but its
orientation is perpendicular to the linear polarisation when the component waves have no phase
difference.
6-3 PRODUCTION OF POLARISED LIGHT
When an elementary light wave interacts with matter, its electric field causes electrons within the
substance to vibrate at the wave's frequency.  These vibrating electrons then re-radiate the absorbed
energy as new electromagnetic waves in all directions.  Although this scattered light has the same
frequency as the incident wave its polarisation depends on the new direction of propagation.

In general, therefore,  when light interacts with matter its polarisation may be changed. The
main mechanisms by which this happens are :

1. by passing through dichroic materials;
2. by passing through birefringent materials;
3. by scattering;
4. by reflection;
5. by passing through optically active materials.

6-4 DICHROIC MATERIALS
In some crystalline materials, which are described as dichroic, the absorption of light depends on
the orientation of its polarisation relative to the polarising axis of the crystal.  Light whose plane of
polarisation is perpendicular to the polarising axis is absorbed more than that which is parallel to it.
The most common example is a group of materials sold under the trade name Polaroid which are
used, for example, in sunglasses and photographic filters. One variety of Polaroid contains long
molecules of the polymer polyvinyl alcohol (PVA) that have been aligned and stained with iodine.
The best known example of a crystalline dichroic material  is the mineral tourmaline.

Polarisers made from dichroic materials differ from an ideal polariser in the following ways.
Firstly, if the polariser is thin, the emerging light may not be completely plane polarised.  Secondly
there is some absorption of the transmitted polarisation component.  Thirdly the amount of
absorption usually depends on the frequency of the light, so that the light which comes out may
appear to be coloured.
6-5 BIREFRINGENCE
In some materials light with different polarisations travels at different speeds.  Since we can regard
any wave as the superposition of two plane polarised waves, this is equivalent to saying that one
beam of light travels at different speeds in the material, that is the material has different refractive
indices for light of the same frequency.  Such materials are said to be doubly refracting or
birefringent.  Examples are crystals such as the minerals calcite (calcium carbonate) and quartz
(silicon dioxide) or materials like Cellophane when it is placed under stress.

The speed of light in a birefringent crystal depends, not only on the polarisation, but also on
the direction of travel of the light.   As usual we can regard any beam of light as a superposition of
two linearly polarised components at right angles to each other.  By choosing suitable directions for
the polarisation components it is found that one component wave, called the ordinary wave, travels
at the same speed in all directions through the crystal, but the speed of the other polarisation
component, called the extraordinary wave, depends on its direction of travel. There are some
propagation directions in which all polarisations of light travel at the same speed and a line within the
crystal parallel to one of those directions is called an optic axis.   Some crystals, called uniaxial
crystals have only one optic axis, while others, the biaxial crystals, have two.  

Figure 6.11. shows what would happen to light starting out from some point inside a calcite
crystal.  (This is not as silly as it may seem; Huygens' construction regards each point on a wavefront
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as a source of new waves.  So the 'point source' considered here could be a point on a wavefront which
originated outside the crystal.)

Calcite has one optic axis, along which the ordinary and extraordinary waves travel at the same
speed, and the plane of the diagram has been chosen to include that axis.  Two wavefronts are shown.
Since the ordinary wave travels at the same speed (vo) in all directions its wavefronts (for light coming
from a point source) are spherical, and the section of the wavefront in the diagram is therefore circular.
On the other hand, the speed (ve) of the extraordinary wave depends on the direction of travel and the
section of the wave front shown is elliptical.  In calcite the speed of the extraordinary wave is always
greater than or equal to the speed of the ordinary wave, so the extraordinary wavefront encloses the
ordinary wavefront.  In a crystal where the extraordinary wave is the slower of the two, its wavefront
would stay inside the spherical wavefront of the ordinary wave.  In figure 6.12 the polarisations are
shown.  The ordinary wave is polarised perpendicular to the plane of the diagram and the polarisation of
the extraordinary wave is parallel to the plane of the diagram.

 o

 Optic axis

e wavefront

o wavefront

vo

ve

ve

vo =

S

Figure 6.11.   Ordinary and extraordinary waves
In this diagram the uniaxial crystal has been sliced so that the section contains the optic axis, which is

defined as the orientation in which the e and o waves travel at the same speed.  The speed of the
extraordinary wave depends on direction.  The diagram shows wavefronts for e and o waves which

started from the point S at the same time.

 Optic axis

 o  e

 Optic axis

Figure 6.12.   Polarisation of e and o waves
The wavefronts from figure 6.11 have been drawn separately.  The ordinary wave is polarised perpendicular to
the plane containing the optic axis.  Note that in this and other diagrams, polarisations perpendicular to the

page are shown as dots while polarisations in the plane of the page are represented by short lines.
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Birefringence and circular polarisation
In any direction other than along an optic axis the wave speed depends on the direction of travel and
the polarisation.  In the following discussion we consider only light travelling in a plane
perpendicular to the optic axis (figure 6.13).  In this case the polarisation of the ordinary wave is
perpendicular to the optic axis.  The speed of the ordinary wave does not depend on direction.  The
component with polarisation  parallel to the optic axis is  an extraordinary wave.  It can be faster or
slower than the ordinary wave.

Ordinary ray

Extraordinary ray

Optic axis
Crystal

vo

ve

Figure 6.13.  Ordinary and extraordinary rays in a uniaxial crystal
The faces of this crystal are not natural; they have been cut so that one pair of opposite faces is perpendicular to

the optic axis while the other faces are parallel to the optic axis.

Birefringence can be exploited to produce circular polarisation.  This can be achieved by
letting a beam of plane polarised monochromatic light strike a specially prepared slab of birefringent
material with faces cut like the crystal shown in figure 6.13.   Light enters the crystal normal to a
surface which contains the optic axis, with its polarisation at 45° to the optic axis.  In order to
analyse what happens, the electric field of the incident light can be resolved into ordinary (o) and
extraordinary (e) components, perpendicular and parallel to the optic axis (figure 6.14).  Since the
angle of incidence is 90° both ordinary and extraordinary waves travel inside the crystal in the same
direction (there is no refraction), but with different speeds.

Optic axis
Polarisation of
incident beam

Ordinary component

Extraordinary component

45°

Equivalent component polarisations

o

e

Figure 6.14  Resolving the plane polarisation into e and o components
A plane polarised wave enters a crystal with its polarisation at 45° to the crystal's optic axis. The plane

polarisation can be regarded two perpendicular plane polarisations with equal amplitudes.  Each component is at
45° to the original polarisation.  What has happened to the light by the time it comes out the other side of the

crystal depends on the thickness of the crystal and is shown in figure 6.15.

  Since the ordinary and extraordinary waves travel at different speeds through the crystal, their
phase difference and the polarisation of the emerging light will depend on the thickness of the
crystal.  If the extraordinary wave is faster, it will progressively move ahead of the ordinary wave.
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To find the polarisation of the wave that comes out at the second boundary we can add the
extraordinary and ordinary components together again.  Depending on the thickness of the crystal,
any of the following can happen.
• If the extraordinary wave has gained one complete wavelength (figure 6.15d) the phase
difference between the ordinary and extraordinary components will be effectively the same as it was
originally, so the emerging wave is linearly polarised with the same plane of polarisation as the
incident wave.
• If the extraordinary wave has gained exactly half a wavelength (figure 6.15b) the two
components will be out of phase by π.  This phase relation is maintained at all times. The resultant
wave is linearly polarised with its polarisation perpendicular to that of the original wave, i.e. the plane
of polarisation has been rotated through an angle of 90°.  A slab of birefringent material which
produces this effect is called a half wave plate.
• If the extraordinary wave has gained a quarter wavelength (figure 6.15a) there is a phase
difference of π/2 between the e and o waves so the light becomes circularly polarised.  (Have another
look at figure 6.8.)
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Figure 6.15      Action of wave plates

• If the extraordinary wave has gained three quarters of a wavelength (figure 6.15c) the phase
difference is 3π/2 and the light is circularly polarised with the resultant electric field rotating the
other way.

One can use slabs of birefringent material where the extraordinary wave gains l
4  or 3

4 
wavelength to produce circularly polarised light from linearly polarised light or vice versa.  Such
slabs are called quarter wave plates.  Note that to get circularly polarised light, the incident light
must be polarised at 45° to the optic axis; other angles will give unequal e and o components so the
light which comes out will be elliptically polarised.
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Double images

Figure 6.16.   Double image in a calcite crystal
The viewing angle has been chosen so that the ordinary image appears to be undisplaced.

Suppose that unpolarised light propagating in the plane perpendicular to the optic axis of a
slab of birefringent material does not strike the surface of the slab at right angles.  When the incident
beam enters the birefringent material, it separates into two.  One beam is polarised perpendicular to
the optic axis (ordinary) and the other is polarised parallel to the optic axis (extraordinary).  The two
polarisations travel in different directions because they have different speeds, and hence different
refractive indices. So they are refracted along different paths.  One consequence of this is that a
single object viewed through a birefringent material will produce a double image (figure 6.16).

 Optic axis perpendicular to page
Unpolarised

light
 Extraordinary ray

 Ordinary ray Birefringent material

Figure 6.17.  How a double image is formed
The transmitted rays seem to come from different places.
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Many birefringent crystals have refractive indices which are very similar but the mineral
calcite, one of the crystalline forms of calcium carbonate has noticeably different refractive indices
for the ordinary and extraordinary rays.

Crystal no ne

ice 1.309 1.313

quartz 1.544 1.553

calcite 1.658 1.486

Table 6.1.  Refractive indices for some uniaxial crystals

The Nicol prism
Since calcite is colourless and absorbs very little of either extraordinary or ordinary light, very pure
calcite (called 'Iceland spar') was once used to make a very good kind of polariser, called a Nicol
prism.   A crystal of calcite is carefully shaped and cut in two.  The two parts are then rejoined using
a thin layer of transparent glue whose refractive index lies between those for the e and o rays.  For a
suitable direction of incident unpolarised light, the ordinary rays are totally internally reflected at the
boundary with the glue, while the extraordinary rays pass through.  This gives a separation of the
light into two components with different polarisations, travelling in quite different directions.  A
Nicol prism has the advantage that the light coming out is completely plane polarised and it is not
tinted.

 e

 o

 Cement

 90°

 68°

 Calcite

Figure 6.18.  A Nicol prism
The ordinary ray is totally internally reflected at the cemented joint, leaving the completely plane polarised

extraordinary ray.
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6-6 POLARISATION BY SCATTERING
Light from the sky is sunlight scattered by air molecules; the scattered light propagates from the
scattering molecules to the observer.  If you look at the sky through a piece of Polaroid in a direction
perpendicular to the sun's rays you will observe that the scattered light is polarised with its direction
of polarisation perpendicular to the plane containing your line of sight and the sun.  In interpreting
this diagram you should remember that light is a transverse wave; it cannot have electric field
oscillations with components in the direction of propagation.

Unpolarised
light from
the sun

Scattered light polarised
perpendicular to the page

Figure 6.19.  Polarisation by scattering in the atmosphere

Only light scattered through 90° is completely plane polarised.  Scattering at other angles
produces partially polarised light.  However, when you look at the sky in a direction perpendicular to
the direction of the sun, the light that you see is only weakly polarised because most of it has been
scattered many times and the polarisation by scattering tends to be randomised.
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6-7 POLARISATION BY REFLECTION
At boundaries between materials of different refractive index the reflectivity depends on the
polarisation of the incident light beam.  We can think of incident light as made up of two
components, one with its E field parallel to the surface (in the diagram, normal to the page) and the
other with its E field in a plane perpendicular to the surface (in the diagram, the plane of the page).
Each of these components is reflected by different amounts as the angle of incidence is increased.
In particular, at a certain angle of incidence, only the component with its E field parallel to the surface
is reflected.  This angle is called the polarising angle or Brewster angle φp and is given by

tanφp = 
n2
n1

 ... (6.2)

where n1 and n2 are the refractive indices of the two materials.  If the first medium is air, the
Brewster angle is equal to tan-1n2.

90°

φp

Unpolarised
light

Polarised parallel to
the reflecting surface

Partially
polarised

n1

n
2

Figure 6.20.  Polarisation by reflection
Note that when the reflected light is completely plane polarised, the angle between the reflected

and refracted rays is 90°.  At other angles of incidence the reflected light is partially plane
polarised.
6-8 PRACTICAL AND IDEAL POLARISERS
In general, dichroic materials do not produce completely plane polarised light; the light which comes
out is only partially plane polarised.  Furthermore the polarised light which does get through is
usually absorbed to some extent and this absorption may be greater for some some frequencies than
for others. Much better, but more expensive, polarisers can be made using devices like the Nicol
prism. These devices are much closer to an ideal polariser, which will produce completely plane
polarised light, with no significant absorption of the transmitted component, for any frequency.
Since each frequency component is polarised a Nicol prism can be used to polarise white light,
without introducing any tinting.

Similarly polarised light can also be produced using stacks of glass plates arranged so that
reflection at successive boundaries takes place at the Brewster angle.

Remember that Malus's law gives accurate results only for ideal polarisers.
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6-9 OPTICAL ACTIVITY
Some materials (e.g. sugar solutions and many crystals) have different refractive indices for

left and right circularly polarised light.  This phenomenon is called optical activity.  The effect of
such a material on linearly polarised light can be deduced by resolving the light into left and right
circularly polarised components with equal magnitudes.  One of these traverses the material faster
than the other so it moves ahead. When the two circularly polarised components emerge from the
material their phase difference has changed. The combination of the two circularly polarised
components is once again linearly polarised light with a new orientation.  So optical activity is a
rotation of the plane of polarisation of plane polarised light - the thicker the medium the greater the
angle of polarisation.

In a technique known as saccharimetry this rotation is used to analyse sugar solutions.  Some
sugars rotate the plane clockwise; these are described as dextrorotatory.  Other sugars which rotate
the plane anticlockwise are described as levorotatory.  The magnitude of the effect depends on the
concentration of sugar in the solution.

6-10 PHOTOELASTICITY
Birefringence can be induced in glass and some plastics by mechanical stress. This phenomenon is
called photoelasticity.  Photoelasticity can be used to study stress patterns in loaded engineering
structures and other objects.  A perspex model of the object (for example an engine part, a bridge or
a bone) is constructed and placed between crossed polarisers.  When external forces are applied to
the model, the internal strains cause birefringence, so that some of the light now gets through and the
light patterns reveal the patterns of the internal strains.  Since the refractive indices also depend on
the frequency of the light the resulting patterns are brightly coloured when incident white light is
used.

6-11 MISCELLANEOUS APPLICATIONS
• A pair of polarisers can be used to control the intensity of light by varying the angle between
their polarising axes.
• Polarising sunglasses are used to reduce glare.  Since light scattered from the sky and light
reflected from shiny surfaces such as water or hot roads is partially plane polarised, the
appropriately oriented polarising material reduces the intensity of such light and the associated glare.
• When a thin slice of rock is placed between crossed polarisers in a petrological microscope the
appearance of the mineral grains depends on their crystal shape, their light absorbing properties and
birefringence.  This aids in their identification.
• Birefringence can be induced in some materials by high electric fields (a phenomenon known
as the Kerr effect).  This effect can be used to make fast shutters for high speed photography.

THINGS TO DO 
• Use a pair of polarising sunglasses to examine the polarisation of light reflected from a pane
of glass or a shiny tabletop.  How can you determine the polarising axis of the sunglasses?  Can you
measure or estimate the Brewster angle?  Can you determine the refractive index of glass or furniture
polish?
• Use a pair of polarising sunglasses to examine the polarisation of light from the sky.  What is
the orientation of the partial polarisation?  From which part of the sky does the polarised light come?
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 QUESTIONS

Q6.l a)

Incident unpolarised light

B

A

Unpolarised light of intensity Iin is incident on two ideal polarisers which have their polarising axes at
90° to each other.  What are the polarisation and intensity of the light at A and B?

b) Suppose that the two polarising axes are at an angle θ to each other.  What are the polarisation and intensity of
the light at B?

Incident unpolarised light

B

θ 

c) Suppose that a third polariser is placed between the two crossed polarisers with its polarising axis at an
angle of 30° to the first polariser.  What are the polarisation and intensity of the light at B?

Incident unpolarised light

30° B

Q6.2 The refractive indices for ordinary and extraordinary waves travelling at right angles to the optic axis in quartz
are no = 1.544 and ne = 1.553.  A quarter wave plate is one for which the two waves get exactly a quarter of a
wavelength out of step after passing through it.

What is the thickness of the thinnest possible quarter wave plate for a wavelength of 600 nm?
Will such a quarter wave plate for λ = 500 nm be thicker or thinner?
Show that a much thicker piece of quartz is required if it is to act as a quarter wave plate at several

visible wavelengths.
Q6.3 Draw a set of diagrams of electric field vector to show how two linearly polarised waves with perpendicular

polarisations, the same frequency and phase, but different amplitudes superpose to form another linearly
polarised wave.  Draw another set of sketches to show what happens if the phase of one the component waves
is advanced by half a cycle (π/2).

Q6.4 A material has a critical angle of 45°.  What is its polarising angle?
Q6.5 How do polarising sunglasses reduce glare?  Why do they have an advantage over sunglasses which rely on

absorption of light only?
Q6.6 An unpolarised beam of light passes through a sheet of dichroic material which absorbs all of one polarisation

component and 50% of the other (perpendicular) component.  What is the intensity of the light which gets
through?

Q6.7 Which would be thicker, a quarter wave plate made from calcite or one made from quartz?  See table 6.1.
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Discussion questions
Q6 .8 How could you distinguish experimentally among beams of plane polarised light, circularly polarised light and

unpolarised light?
Q6.9 Can polarisation by reflection occur at a boundary where the refractive index increases, for example with light

going from water to air?
Q6.10 Ice is birefringent.  (See table 6.1.)  Why do you not see a double image through an ice block?
Q6.11 How could you identify the orientation of the optic axis in a quarter wave plate?
Q6.12 What happens to circularly polarised light when it goes through a quarter wave plate?  What happens to

it in a half wave plate?
Q6.13 One way of reducing glare from car headlights at night would be to fit polarisers to headlights and

windscreens.  How should the polarisers be arranged.  Is this a good idea?   What are the disadvantages?
Q6.14 A salesperson claims that a pair of sunglasses is polarising.  How can you check the claim before

leaving the shop?
Q6.15 There was once a kind of three dimensional movies based on polarised light.  How might such a system

work?
Q6.16 Nicol prisms, which have to be made from very pure crystals of calcite, are very expensive compared

with mass-produced Polaroid sheets.  What are the advantages of a Nicol prism over Polaroid?
Q6.17 What happens when circularly polarised light goes through a quarter wave plate?   You can work it out

by studying figure 6.15.  First look at what a quarter wave plate does to linearly polarised light.  What do two
quarter wave plates do to linearly polarised light?
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L7 OPTICAL SYSTEMS

OBJECTIVES 

Aims
Your aim here should be to acquire a working knowledge of the basic components of optical
systems and understand their purpose, function and limitations in terms of concepts learned from
earlier chapters.  You should also be able to apply your knowledge of optics to describe the
structure, function and limitations of  a simple camera.  A long term goal is that when you encounter
new or unfamiliar optical instruments in future, you will be able to understand, or figure out, their
function and limitations.

Minimum learning goals
1. Explain, interpret and use the terms:

(a) lens system, objective,  eyepiece, optical relay,  
(b) spherical aberration, chromatic aberration, coma, curvature of field, astigmatism,
distortion,
(c) principal planes, principal points, focal points, nodal points, cardinal points, entrance
pupil, stop, aperture, focal ratio, f-number, depth of field, image brightness,
(d) cornea, aqueous humour, vitreous humour, iris, retina, rods, cones, photopic vision,
scotopic vision, accommodation, hyperopia, myopia, astigmatism.

2. Describe and discuss the nature of aberrations.
3. Describe and apply ray-tracing techniques for locating images formed by lens systems whose

cardinal points are given.
4. Explain how entrance pupil and aperture affect the illumination of images, and do simple

calculations (photographic exposures, for example) related to these.
5. Draw a labelled diagram showing the structure of a simple camera and name its parts.

Describe and discuss the function of the camera.
6. Describe the optical structure and function of the eye.
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TEXT & LECTURE 
7-1 OPTICAL INSTRUMENTS
Optical instruments whose function is to produce images can be divided into two groups.
• Photographic instruments produce real images. Examples include cameras, projectors and
eyes.
• Visual instruments produce virtual images which can be looked at with the eye.  Examples
are magnifying glasses, telescopes and microscopes.

Optical instruments are made up of optical components classified as objectives, eyepieces and
optical relays.  The component nearest the object is called the objective and its purpose is to form a
real (intermediate) image of the object.  An eyepiece is used, essentially as a magnifying glass, to
look at the image produced by the objective.  The purpose of an optical relay is to transfer an
intermediate image from one place to another, more convenient, location.  Optical relays can also
change the orientation of an image, e.g. make an inverted image upright.  Prismatic binoculars
(figure 7.1) are an example which uses all three types of component.

Eyepiece 

Optical
relay 

 objective

Figure 7.1.  Prism binoculars

Objectives and eyepieces are designed to act like single ideal lenses, but they are usually made
up of a number of lens elements.  That is done in order to reduce lens aberrations and thus give
clearer images.
7-2 ABERRATIONS
The equations relating image and object distances, derived earlier assuming paraxial rays, describe
the performance of an "ideal" lens.  If paraxial approximations are not made, the way a real lens
forms images can still be calculated, although with difficulty.  The differences between the
performance of a real lens and an ideal lens are called aberrations.

There are six types of aberration.  Spherical aberration and chromatic aberration were
discussed in chapter L3.  The remaining four are: coma, curvature of field, astigmatism, distortion.
Coma
Coma is an aberration which shows up in the images of points well away from the principal axis.
The image (IC in figure 7.2) formed by rays which pass through the central region of the lens is
further from the principal axis and also further from the lens than the the image (IE) formed by rays
which go through the region near the edge of the lens.  The net effect is that the image of an off-axis
point has a comet-like or pear-shaped appearance.
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I E

IC

Image in the
plane of IC

Figure 7.2.  Coma
Curvature of field

The image of a plane object, perpendicular to the principal axis, is really located on a curved
surface.  The effect is that if we look at the images formed in a plane perpendicular to the principal
axis, part of each image will be out of focus.  If we adjust the part of the image near the axis for
good focus then the edges are out of focus; when the edges are well-focussed the central part is
fuzzy.

Object Image

Figure 7.3.  Curvature of field

or

Object Images

Figure 7.4.  Images affected by curvature of field
Astigmatism
Astigmatism is a complex geometrical aberration associated with the fact that the images of points
off the principal axis can become elongated.  Although astigmatism occurs in symmetrical lenses the
effect can also be produced by asymmetries in the lens.  For example rays which pass through a
vertical section of the lens may come to a focus closer to the lens than do the rays passing through a
horizontal section.

 Object

or or

Examples of images

Figure 7.5.  Astigmatism
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Distortion
Distortion is the alteration of the shape of an image.  Two common kinds of distortion are
pincushion and barrel distortion. In pincushion distortion the image of a square grid has the corners
pulled out whereas in barrel distortion they are pushed in.

Object Pincushion
distortion

Barrel
distortion

Figure 7.6.  Distortion

7-3 IMAGE FORMATION BY OPTICAL SYSTEMS
Ray tracing for a single thin lens

F2

F1

Object

ImageP

1

2 3

1
3
2

Figure 7.7.  Ray tracing for a thin lens
In chapter L3 we discussed the following rules for ray tracing using the paraxial

approximation for a thin lens (figure 7.7).
1. Rays incident parallel to the principal axis after passing through the lens, are deflected so that

they pass through (or appear to come from) the second focal point, F2.
2. Incident rays passing through the first focal point, F1, are refracted so that they emerge parallel

to the principal axis.
3. Rays which pass through the centre of the lens emerge in the same direction.

Since the lens is thin, all the constructions can be made by making all deflections at a plane
(called the principal plane) through the centre of the lens.
Ray tracing for a thick lens or any optical component
The function of a thick lens or a system of any number of lenses can be described in a similar
manner.  The properties of such a system can be described in terms of two focal points (as for a
thin lens) as well as two principal points and two principal planes (instead of one).  In addition
there are two new points, called nodal points.

The ray-tracing rules are now as follows (see figure 7.8).
1. Rays which come in parallel to the principal axis are deflected at the second principal plane

towards the second focal point.
2. Rays which come in through the first focal point are deflected at the first principal plane so

that they come out parallel to the principal axis.
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F2F1
Object

ImageP1 P2

First
principal
plane

Second
principal
plane

Principal axis

f f

1

2

1
2

1 2

Figure 7.8.  Ray tracing using principal planes

Note that these rules do not give the actual paths of the light rays while they are inside the lens
system, but provided that the paraxial approximation is still good, they do give the correct paths of
the rays which come out of the system.  In the construction the complex set of deflections for the
real rays is replaced by a single deflection for each construction ray, which takes place at one of two
principal planes.

When the media on either side of the optical system have the same refractive index the
distances F1P1, F2P2, which are called the first and second focal lengths (f1, f2) are equal.   When the
media on each side of the optical system are different (as in the eye or in oil-immersion microscopy)
the two focal lengths have different values.  For example the first focal length of a human eye is 17
mm while the second focal length is 23 mm.

Notice that for a single thin lens, the principal planes coincide, so a single principal plane
suffices.

For a single thin lens we had a third ray-tracing rule: a ray passes through the centre
undeflected.  To get the equivalent of the rule for a lens system we need to define two more special
points, the nodal points, on the principal axis of the system. The third rule is as follows.

N1

N2

Thin lens Thick lens
3

3

3

Figure 7.9.  Ray tracing using nodal points

3. For a ray coming in to the first nodal point N1, construct a ray from the second nodal point N2
in the same direction.
When the medium on each side of the system is the same, the nodal points coincide with the

principal points.  If the media on the two sides are different the nodal points no longer coincide with
the principal points.

The focal points, the principal points and the nodal points are called the cardinal points of a
lens system.
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The lens equation
With object distance defined as the distance from the object to the first principal plane and the image
distance as the distance from the second principal plane to the image (figure 7.10), the lens equation
(introduced in chapter L3) still works for paraxial rays.

1
o    +  

1
i  =

1
f    . ... (7.1)

F2F1
Object

ImageP1 P2

f f1 2

ho

h i

o i

Figure 7.10.  Definition of distances and lateral magnification

7-4 MAGNIFICATION
The linear magnification of an optical system is defined as the ratio of image size to object size. It
is useful to distinguish two ways of specifying linear magnification.  The first which we have already
defined in chapter L3, is strictly the lateral magnification, defined as

m =  
image height
object height    .

The magnification is still given by the formula

m = - 
i
o     . ... (7.2)

F2F1 P
2P1

o L L i 

Figure 7.11.  Longitudinal magnification

m = 
Li
Lo
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7-5 BRIGHTNESS OF THE IMAGE
The brightness of an image is determined by the amount of light passing through the optical system
which in turn is determined by
(i) the diameter of the lenses, or
(ii) the diameter of the apertures (holes) in any opaque screens which are known as stops or

diaphragms.
Example
For example figure 7.12 shows the formation of a point image of a distant object by a single lens.
All the light collected by the lens, shown in the shaded region of the diagram, goes to form the
image.  The wider the lens, the more light we get, so the image is brighter.

Stop

Figure 7.12.  How lens diameter affects image brightness
All the light which goes through the lens goes into the image.  The trade-off against less light is reduced

aberrations.

On the other hand using all of a lens to form an image can result in noticeable aberrations, so
we often deliberately restrict the amount of light using a screen with a hole, often called an aperture
stop, to stop some of the light.  The image in that case will not be so bright.
Example
In a two-lens system the stop is often placed between the lenses so that some of the light which
enters the system does not get through to form the final image.  Again the image brightness depends
on the diameter of the aperture.

Aperture  stop

O I

Figure 7.13.  A stop used in a multiple lens system
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If you look at the stop located between two lenses you can do so only by looking into the
system from one side or the other.  If you look in from the "object side" you will see an image of the
aperture stop formed by the first lens.  If the first lens is a converging lens, that image will be
enlarged.  The image of the hole (stop) seen from the object side is called the entrance pupil of the
system (figures 7.14, 7.15).  Similarly if you were to look into the system form the "image side" you
would see a different image of the hole.  That image is called the exit pupil (figure 7.15).

Stop

Look in 
from here

Virtual image of
the stop formed by
the first lens

Second lens not  shownFirst lens

Entrance pupil is the
image of the hole

a 'Aperture' is the 
diameter of the 
image hole

Figure 7.14.  Entrance pupil of a lens system
We can describe how much light gets through the system in terms of the size of the actual

aperture, or the size of the entrance pupil, or the size of the exit pupil.  Figure 7.15 shows how the
light from a point source is restricted in terms of these ideas.  The bundle of rays which gets through
is limited by the cone with the object point as apex and the entrance pupil as base. An alternative,
equivalent,  specification is the bundle of rays converging on the image point in the cone based on
the exit pupil.

O I

Exit pupil Entrance pupil

Stop

Figure 7.15.  How the light is restricted by entrance and exit pupils
In order to use this approach we need to know, not only the location of the entrance pupil, but

also its diameter.  If we look at the stop through the first lens, it appears to have diameter a, so a is
the diameter of the entrance pupil.  For a single lens with no aperture stop, the diameter of the
entrance pupil is just the diameter of the lens.
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Aperture
The two important parameters of a lens system which affect the brightness of images are the
diameter of its entrance pupil, commonly called the aperture, and its focal length.  For a given object
brightness, the image brightness is actually determined by the ratio of the aperture to the focal
length.  We have already seen that for a given focal length, the brightness increases with increasing
aperture.  But for a fixed size of aperture, a short focal length produces brighter (and smaller)
images.  For a given object at a reasonably large distance, systems with the same value of the ratio,
aperture divided by focal length, produce images with the same image brightness. (This result breaks
down at small object distances.)

Aperture is often specified as a fraction of the focal length.  For example, a system which has
an aperture of f/8 has an entrance pupil whose diameter is one eighth of its focal length.  (The slash
is a division sign, so the aperture is equal to f divided by 8.)  Other terms used in connection with
this idea include the following.
• The focal ratio (n) is the ratio of the focal length to the aperture, f/a.  The terms focal ratio and

f-number both refer to the divisor (n) in the expression f/n.  Thus if the aperture (a) is equal
to f/8 then the focal ratio and the f-number are both equal to 8.  

• The aperture ratio is the ratio of the aperture to the focal length, i.e. the reciprocal of the focal
ratio.  For an aperture of f/8 the aperture ratio is 1/8.
Note that the aperture is a distance, whereas aperture ratio and focal ratio (f-number) are pure

numbers without units.

Example
A single lens with a diameter of 10 mm and a focal length of 50 mm has an aperture of f/5, an
f-number of 5, an aperture ratio of 0.2 and a focal ratio of 5.

7-6 RESOLUTION
The theoretical limit to the smallest objects that can be distinguished with an optical component is
determined by diffraction.  The smallest hole in the optical component, normally the stop, has the
greatest diffraction effect.

From chapter L5 (equation 5.2), the angle between the central maximum and the first
minimum of the diffraction pattern of a point object by a circular aperture of diameter a is given by

θ ≈ sinθ   =   1.2 
λ
a     . ... (7.3)

The ideal image of a distant point object should be a point at a distance equal to f, the focal
length, from the lens system.  In reality the image is a small circular diffraction pattern in which the
radius of the central bright region is given approximately by

r = θ f

= 1.2 λ  
f
a    . ... (7.4)

Notice that this result contains the ratio of aperture to focal length again. The larger the
aperture as a fraction of the focal length, the smaller is the diameter of the diffraction pattern.

It is worth noting, however, that the practical limit to the resolution of an optical system is
normally set by aberrations and other imperfections, not by diffraction.
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7-7 THE CAMERA
In its simple form a camera consists of a light-tight box, a compound objective lens, a shutter and a
film.  A variable aperture controls the image brightness.

The objective, which forms a real image at the film plane, is usually specified in terms of its
focal length, and its maximum usable aperture.  For example a camera lens might be marked 70 mm,
f/4.5.  The image brightness is controlled by varying the size of the aperture which is normally
described as a fraction of the focal length.  Depending upon the lens, aperture settings can range
from about f/32 to f/1.  

Focussing is achieved by moving the objective relative to the film plane, which is fixed in the
camera body.  Only one object plane is in focus at any one time.  The images, on the film, of point
objects which are not in the object plane are small discs whose size is determined by the distance of
the film plane from their true image plane and by the angle of convergence of the rays forming the
image (i.e. by the focal ratio).  The range of object distances for which the image discs are
acceptably small is called the depth of field.

Compound
lens -  objective

Iris diaphragm
(aperture stop)

Diaphragm shutter Focal plane shutteror

Film

Figure 7.16.  Parts of a camera (schematic)

O 2
I 1I 2

Objects in this
plane are exactly
in focus on the 
film plane

Film plane

Image discs which
are acceptably small

Depth of field

O 1

Figure 7.17.  Depth of field
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Note.  The larger the aperture, the greater is the apex angle of the cone of rays coming to a focus at
the image.  Image points must then be formed closer to the film plane if the image is to remain
acceptable.   The depth of field is consequently reduced.

7-8 THE HUMAN EYE
The human eye is almost spherical, being about 24 mm long and 22 mm across, most of the eye
being contained within a strong flexible shell called the sclera.  The eye contains an optical system
that produces real images on the light-sensitive retina.  Most of the focussing is done by the outer
surface of the cornea.  The space behind the cornea, the anterior chamber, is filled with a watery
liquid called the aqueous humour whose refractive index (1.336) is only a little less than that of the
cornea (1.376), so there is very little further bending of light rays at the inside surface of the cornea.
After the cornea light must pass the variable opening or pupil formed by the iris before it strikes
the lens of the eye.  

Iris

Cornea

Anterior chamber Posterior chamber
Optic nerve

Blind spot

Fovea

Retina Sclera

Aqueous humour
Vitreous humour

Lens

Figure 7.18.  The human right eye - horizontal section

Variation in the focal length of the eye, and hence its ability to form images of objects at
different distances - a process called accommodation - is achieved by altering the shape of the
lens of the eye.  The lens is a complex layered structure, whose refractive index varies within the
lens.  Light finally passes through the posterior chamber of the eye which is filled with a transparent
jelly-like substance called the vitreous humour (refractive index 1.337).  Inverted real images are
formed on the retina at the back of the eye.  

Normally the eye can focus on objects further than 25 cm from the eye, in fact most young
people can focus much closer than that.  However, instrument designers need to refer to a standard,
close, distance at which most people can focus so the value of 25 cm has been chosen.  That distance
is often called the least distance of distinct vision.
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Rods and cones
In the retina are two kinds of sensors: rods and cones (figure 7.19).  The cones function at high
levels of illumination and mediate colour vision which is called photopic vision.  The rods function
at low levels of illumination when the eye has become dark-adapted and do not give the sensation of
colour, a process called is scotopic vision.  The different spectral responses of the rods and cones
are sketched in figure 7.20.
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120 µm

Cones Rods
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Figure 7.19.  Structure of the retina
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Figure 7.20.  Sensitivity of the human eye

For intermediate light levels the spectral response is between the scotopic and photopic vision
responses, which is is called mesopic vision.
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Resolution
The aperture stop of the eye, called the iris, changes its diameter as the intensity of the incident light
varies.  In daylight its diameter is about 3 mm.  The best resolution at the centre of the eye is about l
minute of arc (3 × 10-4 radian).  The limit is set by diffraction and by the resolving power of the
retina.  The centre of the eye is populated exclusively by cones which have a diameter of about 2 µm.
For two point sources to be resolved their images on the retina must be separated by about 5 µm,
which is comparable to the size of the diffraction pattern (about 7 µm).  
Defects of the eye
The range of accommodation in eyes decreases with age.  To make up for this loss and also to
correct defects, spectacles are used.  Common defects are as follows.

Hyperopia (or hypermetropia) is the condition in which the image of a distant object (at
relaxed vision) lies behind the eye.  A converging spectacle lens, which adds power to the system,  is
used to correct this defect.

Figure 7.21.  Correction of hyperopia

Myopia is the condition in which the image of a distinct object is formed in front of the retina.
It is corrected using a diverging spectacle lens, i.e. by decreasing the power of the system.

Figure 7.22.  Correction of myopia

Astigmatism of the eye is a condition in which the radii of curvature of the cornea and the
lens are not the same for all cross-sections containing the principal axis of the eye.   A lens which
has different curvatures can be used to compensate for the defect.  The practical solution to
correcting astigmatism depends on the other optic defects in the eye.  If astigmatism is the only
defect then a cylindrical lens can be used.  If other defects are present as well, then the lens may be
given one spherical and one cylindrical surface.    It may be appropriate either to add power to the
weaker axis or to subtract power from the stronger axis.
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QUESTIONS 

Q 7 . l Use the ray tracing method described in the lecture to locate the image of the object formed by the optical
component below.

Object

F2P2
P1F1

10 mm high

 60 mm 

30mm 30mm
10mm

Q7.2 A ray parallel to the axis enters an optical system and passes through two lenses as shown in (a) and (b).
Using only a straight-edge, locate the second principal plane in each case.

(a)

(b)

Q7.3 What is the diameter of a lens, focal length +100 mm, aperture f/8?
Q7.4 The lens of a camera has a focal length of +50 mm.  What is the tallest object standing 10 m away that

can give an image fitting onto the film?  (The image must be smaller than 35 mm.)
Q7.5 The lens of a camera has a focal length of 50.0 mm.  Calculate how far the lens must be from the film

in order to focus an object 0.20 m away.  Repeat the calculation for an object at infinity.  What range of travel
of the lens is required to focus objects from 0.20 m to infinity.

Q7.6 A myopic eye cannot focus on objects further away from the eye than a point called the near point.
What are the power and the focal length of a spectacle lens which enables a person whose near point is at 3 m
to see distant objects (i.e. objects at infinity)?

Discussion questions
Q7 .7 If you move a camera while the shutter is open you get a blurred picture, but if you move your eye you can

still see clearly.  Discuss.
Q7.8 In what ways are the eye and a camera similar?  How to they differ?
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L8 VISUAL INSTRUMENTS
OBJECTIVES 

Aims
As a climax to this unit, you should end up with a good understanding of the physical principles  of
visual instruments.  The main topic is the principles of microscopy.  The section on telescopes is
included for interest - it is not examinable.
Minimum learning goals
1. Explain, interpret and use the terms:

near point, least distance of distinct vision, relaxed vision, angular size, angular
magnification, visual instrument, simple magnifier, compound microscope, eyepiece,
objective, optical tube length, numerical aperture, field of view, condenser, resolution of a
microscope, resolving power, maximum useful magnification,  dark field illumination,
interference microscopy.

2. Describe, explain and discuss the operation of a simple magnifier.  Solve simple quantitative
problems on magnification.

3. Draw diagrams showing the essential structure and function of a compound microscope.
Describe and explain how it works.  Solve simple quantitative problems related to its
magnifying function.

4. Describe and discuss resolution and useful magnification of microscopes.  
5. Describe and discuss the brightness of images in a microscope and techniques for illuminating

specimens.
6. Describe and explain the techniques of interference microscopy.
Extra goals
7. Describe and explain the basic principles of telescopes.  

PRE-LECTURE 
8-1 ANGULAR SIZE
Visual instruments are used to make an object appear larger by increasing the angle subtended at the
eye by its edges.  In figure 8.1, the object subtends an angle α at the eye so α is called the object's
angular size.  When α is small its value in radians is approximately equal to the ratio of the object's
linear size to its distance from the eye:

α  ≈  
h
d   . ... (8.1)

h 

d 

α 

Figure 8.1.  Angular size

Q8.1  Work out the following examples.
a) What angle is subtended at your eye by the width of your thumb, when you hold your arm outstretched?
b) The radius of the sun is 7.0 × 105 km and its distance form the earth is 1.5 × 108 km.  What is the angle

subtended by the sun at a telescope on earth?
c) What is the angle is subtended at your eye by a tiny creature 0.1 mm long at a distance of 0.25 m?
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LECTURE 

8-2 ANGULAR MAGNIFICATION
To see more detail in an object, we must make it look bigger.  We need to make the object appear to
subtend a larger angle at the eye so that the image on the retina is larger.  One way of doing that is to
get closer to the object.  If you can't get closer you can use a visual instrument to achieve the
magnification.  For example, if the object is far away and we cannot get closer we can use a
telescope to increase the angle.  On the other hand if the object is very small we cannot bring it too
close because our eyes would be unable to focus on it properly.  In that case we can use a
magnifier or microscope to increase the angle.
Characteristics of the unaided eye
The human eye is capable of focussing on objects close to the eye but how closely depends on a
number of factors, including the age of the subject and the presence of optical defects in the eye. Try
focussing on a small object as you gradually bring it closer to your eye. You will find that there is a
location, called the near point, which is the closest you can bring the object while keeping it in
sharp focus.  Typically a young person (aged 20 or younger without optical defects) has a near point
about 10 mm from the eye, whereas the best a normal sixty-year old subject can manage is to focus
on objects 500 mm away.  By convention, a comfortable close viewing distance for near vision is
taken to be 250 mm (0.25 m).  This distance is often called, inappropriately, the least distance of
distinct vision denoted here by the symbol dv.   At the other extreme, an optical system can be
arranged so that images are formed at infinity.  In that case we have relaxed or far vision.

The finest detail that can be seen by the unaided eye, its resolution, can be calculated as
follows.  The minimum angle subtended by two points which can still be resolved is determined by
diffraction at the pupil.  This angle is about 3 × 10-4 radian.  The closest distance for placing the
object is about 0.25 m.  Therefore, the minimum distance between two points which can still be
resolved is about   3 × 10-4 × 0.25 m  =  0.075 mm.

Visual instruments
The best detail in a small object that you can see with the naked eye is obtained by putting the object
at your near point.  For even more detail you need to use a visual instrument which makes the object
look bigger (figure 8.2).   The effectiveness of a visual instrument is described by its angular
magnification, M, defined as the ratio:

M  =  
angle that image subtends at eye looking through instrument

angle that object subtends at unaided eye under the best possible conditions  

     =  
β
α . ... (8.2)

For far-away objects, where a telescope is used, the denominator (α) is just the angle that the
object subtends at the unaided eye.  For very small objects where a magnifier or a microscope is
used, the denominator is found by calculating the angle α when the object is at the near point.
Clearly, the magnification you get depends on how good your eyesight is.  To get a nominal value
for the magnification which does not depend on individual differences, the lens designer's value of
magnification is obtained, by convention, by supposing that the value of α is the angle that the object
subtends when it is at the standard distance of 0.25 m away from the eye.
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β 

Virtual
image

Visual
instrument

α Object

Angular magnification:

M   =  β
α

Best view with the
unaided eye

Figure 8.2.  Angular magnification
To calculate angular magnification you compare the angular size of the image (β) with the best possible

angular size of the object (α).

Although angular magnification is described in terms of the virtual image formed by the lens,
you should remember that what you see is determined by the real image on the retina (figure 8.3).  
Increasing the angular size (β) of the virtual image produces a bigger final real image.

Virtual image
formed by magnifier

Object

Real image
on retina

Magnifier

Figure 8.3  How the images are formed

8-3 SIMPLE MAGNIFIERS AND EYEPIECES
A single converging lens can be used as a visual magnifier which functions either on its own or as
the eyepiece for a more complex instrument such as a microscope.  The magnification is achieved
by making the object seem to be closer to the eye than the near point.  The lens produces a virtual
image, which is larger than the object and therefore subtends a bigger angle at the eye.  This virtual
image can be located anywhere between the near point and infinity.  The magnification actually
achieved will depend on where the image and the eye are placed relative to the lens.  In order to be
able to compare the magnifications which can be achieved with different lenses we could just quote
the focal length, but that does not give any immediate impression of the magnification.  A more
meaningful measure is the angular magnification achieved for some standard arrangement of image
(or object), the lens and the eye.  For the purpose of this calculation the eye is always placed as close
as possible to the lens.  Angles subtended by objects and images at the eye are then near enough to
being the same as the angles subtended at the lens (figures 8.4 and 8.5).
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 f e
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Figure 8.4.  Simple magnifier or eyepiece used for near vision
For the greatest magnification the image is formed at the near point and the eye is placed close to the

magnifier.

To work out the angular magnification, we compare the angular size of the image (β) with the
angle (αmax) that the object would subtend at the eye (or lens) if it were put at the near point
(distance dv).  It is fairly easy to work out (using the paraxial approximation, tanα  ≈ α etc.) that in
this case the angular magnification is given by the formula:

Me  = 1  +  
dv
fe   ... (8.3)

where fe is the focal length of the lens.  (The subscript e stands for 'eyepiece'.)
Another standard way of arranging things is to have the image at infinity (figure 8.5).  In that

case the eye is said to be relaxed.  

β F2

αmax Largest possible angular size
without magnification

 f e

 f e

d v

β
F1

Virtual image
at infinity

h

h

Figure 8.5.  Using a simple magnifier with relaxed vision
For relaxed vision the object is at the focal point of the lens, so rays from a particular point on

the object are parallel after refraction.  In this example, rays from the bottom of the object enter the
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eye parallel to the principal axis and all the rays from the top of the object enter the eye at an angle β.
Hence the image subtends an angle β at the eye.  With the usual paraxial approximation,

β ≈  
h
fe  . ... (8.4)

The object, if placed at distance dv from the unaided eye, would subtend an angle α:

αmax ≈ 
h
dv

   ; ... (8.5)

so Me = 
β

αmax
    ≈    

dv
fe    . ... (8.6)

For reasonably large magnifications, this formula (8.6) is not much different from the one
quoted earlier (8.3) for the case with the image at distance dv, but it does make a difference for low-
power magnifiers.   Not surprisingly, you get the best possible magnification by forming the virtual
image at the near point.

A magnifier is usually described by its angular magnification rather than by its focal length.
For example, a magnifier using a lens with a focal length of 25 mm would be described as a
"10× magnifier".
8-4 TELESCOPES

A telescope, in its basic form, consists of two components, an objective and an eyepiece.  Its purpose
is to increase the apparent size or separation of distant objects.

α
β

 f o  f e

Objective
Eyepiece

Object at
infinity

Real image

Focal plane
of objective
and eyepiece

Figure 8.6.  Keplerian (astronomical) telescope
In the astronomical telescope the objective produces a real image, which is then viewed with the

eyepiece. The telescope produces an inverted image, but that is no problem when one is looking at
astronomical objects.  However, the same lens arrangement is used in prism binoculars in which the
prisms restore the image to an upright position. (See figure 7.1 in chapter L7.)

Alternatively a diverging lens may be used as an eyepiece, as in the Galilean telescope.

α β

 f o
 f eObjective

Eyepiece

Object at
infinity

Intermediate image
formed by objective

Figure 8.7.  Galilean or terrestrial telescope
In both types of telescope the angular magnification is given by
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M  =  
fo
fe

    .

8-4 MICROSCOPES
The maximum useful magnification obtainable with a simple magnifier is about 20 times.  For
greater magnification we use a compound microscope (figure 8.8).  In its basic form it consists of
an objective and an eyepiece mounted in a tube.  The magnification of a microscope can be worked
out in terms of the focal lengths of the objective and eyepiece and the optical tube length, which is
defined as the distance between the second focal point of the objective and the first focal point of the
eyepiece.  In a high power microscope the optical tube length is much larger than either focal length
so it is roughly equal to the actual separation between the objective and the eyepiece.  (The single
lenses in figure 8.8 may in fact be optical components each made up of several lenses.)

Virtual  image formed by eyepiece

Specimen
Length h

Objective

Intermediate real image

Eyepiece

Optical
tube
length

f e

g

h int

fo

fo

i

o

A

Figure 8.8.  Compound microscope
Not to scale.

The specimen is placed just below the first focal point of the objective.  Since the object
distance is not much more than the focal length, the objective forms a much-enlarged real image, the
intermediate image, at A.  The eyepiece is used as a magnifier to look at the intermediate image .  If
that image is in the focal plane of the eyepiece, the virtual image seen by the eye will be at infinity.

The angular magnification is calculated as follows.
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(i) The lateral (linear) magnification of the intermediate image can be written as the ratio of image
distance to object distance, which in this case gives a magnification of

hint
h   =

i
o   ≈   

g + fo
fo

  .

Since the optical tube length g is usually very much greater than the focal length of the
objective, the lateral magnification produced by the objective is

|mo| =
hint
h      ≈    

g
fo

   . ... (8.7)

(ii) The eyepiece acts as a magnifier so, with relaxed vision, the angle subtended by the final virtual
image is

β ≈
hint
 fe     

 ≈   
gh

fo  fe
    .

(iii) Now the original object, when placed at distance dv from the unaided eye, would subtend an
angle

α ≈
h
dv

    .

So the total angular magnification is

Μ =
β
α     ≈   

g dv
fo  fe

    . ... (8.8)

This result is just the same as saying that the total magnification is the product of the linear
magnification of the objective and the angular magnification of the eyepiece:

M = |mo| Me  ... (8.9)

with |mo| ≈
g
fo

  

and  Me ≈
dv
fe

    .

Some typical values
Magnification of eyepieces: up to 20×.

Optical tube length g (standard value): 160 mm.
Focal length of objectives, low power: 50 to 100 mm;

medium power: 8 to 50 mm;
high power: 4 mm;
very high power: 2 mm.

From these values, the maximum magnification of a microscope is about 1600.  The maximum
useful magnification is limited by diffraction to about 200 to 400.

Image brightness and numerical aperture
The brightness of the image depends on the amount of light from the specimen which enters the
microscope.  As we discussed in chapter L7, the brightness is determined by the entrance pupil of
the objective.  In microscopy another convenient way of specifying the amount of light collected is to
quote the value of the angle u  (figure 8.9) which describes the cone of rays collected by the
objective.
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u

Specimen

Objective

Air or oiln
Numerical aperture

=
n sin  u

Figure 8.9.  Numerical aperture
Numerical aperture depends on the angular size (2u) of the cone of light collected by the objective and the

refractive index (n) of the material between the specimen and the lens.

However, it is not the angle u alone which matters, because the refractive index (n) of the
medium between the specimen and the objective affects the refraction of the rays as they enter the
objective (and hence also, the entrance pupil).  The parameter which matters is called numerical
aperture (N.A.) which is defined as n sinu.  It turns out that numerical aperture also determines the
resolving power of an objective.  Hence, microscope objectives are commonly specified in terms of
their lateral magnification and numerical aperture.
Resolving power
As discussed in chapter L5, the amount of detail that can be seen in an image is limited by
diffraction.  Simple estimates of the limit can be made using the Rayleigh criterion.  The limitations
imposed by diffraction effects in a microscope which is completely free of aberrations can be
described by a quantity called the resolving power of the microscope.  Resolving power is defined
as the minimum value of the distance between two points in the specimen which can just be
resolved.*    Its value is given by the formula, based on the Rayleigh criterion,

R =
0.6 λ
 n sinu   =   

0.6 λ
 N.A.     ... (8.10)

where N.A. is the numerical  aperture of the objective.
In both microscopes and telescopes, the maximum useful magnification is obtained when

the angular separation of these two points, viewed through the  microscope, is equal to the resolving
power of the eye.  For visible light, using a typical wavelength of 500 nm, the maximum useful
magnification turns out to be about 250 times the numerical aperture.

In air the maximum practical value of the numerical aperture is about 0.85, but higher values
can be obtained by filling the space between the objective and the specimen with oil.  With this
technique, called oil immersion microscopy, values of numerical aperture up to about 1.4 can be
obtained.  Using an oil-immersion objective can increase the maximum useful magnification to about
400×.
Field of view
The field of view is the region of a specimen which can be seen at any one time.  It is determined
by those rays from the specimen which can go through the microscope to enter the eye.  Often the
limiting feature is the diameter of the eyepiece.  For instance the objective may produce a large
intermediate image, but the rays forming the extreme points of that image may miss the eyepiece so
that they will not enter the eye.  In that case the observable intermediate image is about the same size
                                                
* The resolving power of a telescope is usually defined in terms of the angle, rather than the distance,
subtended by object points at the objective.  Similarly the resolving power of the eye is given as an
angle.  Whether distance or angle is meant can usually be determined from the context or from the
unit used.
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as the eyepiece, so the size of the field of view is given approximately by the diameter of the eyepiece
divided by the magnification of the objective.

Exit pupil of
microscope

Eyepiece

Intermediate image

Place pupil of eye here

Figure 8.10.  Field of view limited by the eyepiece
The field of view also depends on the position of the eye.  For best viewing the pupil of the

eye should coincide with the exit pupil of the microscope, since that is where the beam of light from
the microscope is at its narrowest.  For a microscope the exit pupil is the virtual image of the
objective's aperture as seen through the eyepiece.  It is a real image on the side of the eyepiece near
the eye.
8-6 ILLUMINATION OF MICROSCOPE SPECIMENS
Most specimens to be viewed with a microscope are not self-luminous and so must be illuminated.
For low magnification ambient lighting may be quite sufficient.  At high magnifications the observed
objects are small so they reflect only a small amount of light.  To make such objects easily visible
the intensity of light falling on them must be increased using special illuminating systems called
condensers.  Which kind of condenser is used depends on how the specimen is to be examined,
which can be one of three ways:

(a)  by transmitted light,
(b)  by scattered light,
(c)  by reflected light.
For optimum performance the condenser should be such that light from each point of the

specimen fills the aperture of the objective.
Illumination by transmitted light
For specimens viewed in transmitted light, the condenser should supply a cone of light such that all
the rays in the cone can enter the objective.  This means that the angle of convergence of the
illuminating light onto the specimen (uc) should be equal to the acceptance angle (uo) of the objective
(figure 8.11).
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Condenser lens
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Extreme ray into
objective
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Figure 8.11.  Illumination by transmitted light from a condenser
For low power objectives, (i.e. less than 10×) good illumination can also be made with a

concave mirror reflecting the light from a convenient source into the microscope.

Objective

Specimen

Concave mirror

Figure 8.12.  Illumination by transmitted light using a mirror

Dark field illumination
Sometimes objects can be more easily seen against a dark background.  For example airborne dust
becomes visible when viewed against a black cloth, by light scattered sideways out of a strong beam
of sunlight.   In microscopy this technique is called dark field illumination (figure 8.13).  The
condenser is equipped with a circular opaque stop so that none of the illuminating beam (shaded in
the diagram) can enter the objective directly.  The image is formed entirely by light scattered from
the specimen, and none of the direct illuminating beam can be seen through the microscope.

Objective

Specimen

Condenser lens

Annular stop

Illuminating beam

Scattered light

Figure 8.13.  Dark field illumination
The illuminating beam misses the objective lens.



L8:   Visual Instruments 125

Illumination by reflected light

Illuminating beam

Scattered light
Objective

Specimen

Light source

Figure 8.14.  Illumination by reflected light
To view specimens in reflected light, illumination from above must be provided.  For low

power microscopes oblique top lighting may be sufficient (figure 8.14).  For higher powers, more
complicated systems, such as that illustrated in figure 8.15, are required.

Illuminating beam

Scattered light

Plain glass reflector

Objective

Specimen

Figure 8.15.  Illumination for high magnification with reflected light

8-6 INTERFERENCE MICROSCOPY
Normally when a uniform beam of light passes through a transparent material it emerges with equal
intensity across the whole beam.  That is true even if the refractive index has different values
throughout the material or if the thickness of the specimen varies.  However, different parts of the
same beam of coherent light which travel through different optical path lengths will have different
phases when they emerge from the specimen.  Interference is a phenomenon which depends on
phase relationships, so we can use interference, in what is called an interference microscope to
"see" refractive index variations in transparent specimens of uniform thickness.  See chapter L4.
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Optical thickness = nd
Refractive index
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Specimen

Figure 8.16. Optical path length

In order to get coherence, a single beam of light is split into two parts, one of which goes
through the specimen while the other does not.  The phase of the light that has passed through a
particular part of the specimen will be different from the phase of light that has taken the other path.
When the two parts of the beam are recombined interference will occur.  Some regions of the
specimen will appear bright, others dark.

Specimen

Full mirror

Half-silvered
mirror

Objectives

Condensers

Principle Practical arrangement

Figure 8.17.  Interference microscopy

QUESTIONS 
Q8.2 What is the angular magnification of a small magnifier, focal length 5 cm, used with relaxed vision?
Q8.3 A magnifier with a focal length of 25 mm is held close to the eye to examine a small object.  As shown

in §8-2, if the object is at the focal point of the lens, the image will be at infinity.
(a) Calculate the angular magnification in this case.

Now if the object is just inside the focal length, you will still get an image on the far side of the lens
but it will be closer.

(b) Use the lens formula to calculate where the object must be for the image to be at 0.25 m.

(c) Calculate the ratio,  image height
object height  , and hence the angular magnification in this situation.

Q8.4 (a) A microscope is made up of  an objective with a focal length of 16 mm, numerical aperture 0.25 and a
10× eyepiece.  The optical tube length has the standard value, 160 mm.  Calculate the angular magnification.
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(b) If the eyepiece restricts the diameter of the intermediate image to 15 mm, how big is the field of view of this
microscope?

Q8.5 Suppose that the objective in the previous question has a resolving power given by

R   =  0.6 λ
N.A.     .   

What is the finest detail that we could observe on the specimen?  What angle does this detail subtend at
the eye when it is viewed through the microscope?  Does the resolution of the eye or the resolution of the
objective determine the finest detail observable with this instrument?

Discussion questions
Q8 .6 What is the angle subtended by a TV screen for comfortable viewing?  Given that the TV image is made up of

625 lines, how does the resolution of the eye compare with the angular separation of the lines?
Q8.8 Why is the magnification of a simple magnifier defined in terms of angles rather than the actual sizes of image

and object?
Q8.9 Spectacles are not used to magnify objects.  What are they used for?  Discuss.
Q8.10 Photographers alter the apertures or f-numbers of their camera lenses.  Why?  What is the relation

between aperture setting and exposure time?
Q8.11 The real image formed on the retina of the eye is inverted. Why don't we see things upside down?
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INDEX
aberrations 48, 102
absorption 17
accommodation 111, 113
achromatic doublet 49
Airy disc 75
amplitude 3, 53, 54
analyser 87
angle of incidence 19
angle of reflection 19
angstrom 6
angular frequency 5
angular magnification 44, 116, 118, 119, 120
angular position 60
angular resolution 80
angular size 115
anti-reflection coating 66
aperture 107, 109, 110

lens 109
aperture ratio 109
aperture stop 107, 108
aqueous humour 111
astigmatism 103, 113
axis

optic 90, 91
polarising 86

bandwidth 61
barrel distortion 104
beam 16
biaxial crystal 90
binoculars 102
birefringence 90-96, 98

induced 98
birefringent material 90, 96
black light 13
blooming 66
Brewster angle 97, 98
brightness

image 107, 109, 110

calcite 90, 95
camera 110
cardinal points 105
Cellophane 90
centre of curvature 47
chromatic aberration 49
circular aperture

diffraction pattern 75-76
circular polarisation 87, 89, 91-94, 98
coherence 58, 60, 61, 125
coherent sources 9, 58
colour 19
coloured fringes 65
coma 102
combination of lenses 45
components of polarisation 85
compound lens 46
concave lens 47
condenser 123
cone 112
constructive interference 55
continuous spectrum 10
contour fringes 66
convergence 39, 40
converging beam 36, 39

converging lens 37, 38, 40, 43
convex lens 47
cornea 36, 111
corner reflector 24
corpuscular hypothesis 2
corpuscular theory 2
critical angle 23, 25
crossed polarisers 87
crystal 90

biaxial 90
uniaxial 90, 95

curvature 36, 47
curvature of field 103
cylindrical lens 50

dark field illumination 124
depth of field 110
destructive interference 55
diaphragm 107
dichroic material 90, 97
dichroism 90
diffraction 37, 55, 70, 109, 113, 121
diffraction envelope 78
diffraction pattern 70, 72
diffuse reflection 18
dioptre 40
dispersion 26-27
distortion 104
divergence 40
diverging beam 37, 39
diverging lens 37, 39, 42, 43, 44
double image 94
double slit (see Young's experiment)

electric field 5, 84
electromagnetic spectrum 12
electromagnetic wave 5, 12
elementary wave 3, 5, 84, 85
elliptical polarisation 89
endoscope 25
energy 2, 55, 56, 61, 66
entrance pupil 108, 109
envelope 78
exit pupil 108, 123
extraordinary wave 90, 92
eye 8, 36, 111, 116
eyepiece 102, 117, 119, 120, 121, 122

f-number 109
far vision 116
field of view 122
film 110
filter 86, 90
first focal plane 41
first focal point 41
flatness, test for 66
fluorescence 13
focal length 38, 43, 105

measurement of 50
focal plane 38, 39, 41
focal point 38, 39, 104, 105
focal ratio 109
focus 36, 39, 110, 111
focussing 110, 116
Foucault 2
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Fraunhofer diffraction 72
frequency 5, 6, 10
Fresnel 2, 71
Fresnel diffraction 72
fringe 56, 59, 60, 70

washed-out 61
fringe pattern 60, 61
fringe spacing 60, 61
fringes

coloured 65
contour 66

gamma ray 13
geometrical optics 1, 35
glasses 113
grazing incidence 23

half wave plate 93
Huygens 2, 71
Huygens' construction 71
hypermetropia 113
hyperopia 113

ideal polariser 86, 87, 97
illumination 123-125
image 29, 30, 33, 40, 41, 42, 43
image brightness 107, 109, 110, 121
image distance 43
image point. 29
incident light 18
incident ray 19
incoherent sources 9
infrared radiation 13
initial phase 3
intensity 8, 54
interference 10, 53, 56-67
interference microscope 125
interference pattern 56, 61
internal energy 13
inverse square law 13-14
inverted image 41, 44
irradiance 8, 13, 14

Kerr effect 98

laser 11, 61
lateral magnification 44, 106, 120
law of refraction 21, 22, 37
least distance of distinct vision 111, 116
lens 36, 111
lens equation 43
lensmaker's formula 47
light detector 7
light pipe 25
line spectrum 11
linear magnification 44, 106
linear polarisation 84-87, 98
localised fringes 65
longitudinal magnification 106
longitudinal wave 5

magnetic field 5
magnification 44, 106

useful 121, 122
magnifier 116, 117, 119, 121
magnifying glass 50, 102
Malus's law 86, 97
measuring focal length 50

medium 2
meniscus lens 47
mesopic vision 112
micron 6
microscope 116, 120-126

interference 125
microwaves 12
minimum

single slit 75
mirage 28
mirror 19, 33, 34
monochromatic light 11, 56, 61
myopia 113

near point 116, 117, 119
near vision 116
negative lens 40
Newton's rings 63
Nicol prism 95, 97
nodal point 104, 105
normal 19
numerical aperture 122

object 29, 33, 41, 42, 43
object distance 43
object point 29
objective 79, 102, 110, 119, 120, 122, 123
oil immersion microscopy 122
opaque object 69
optic axis 90, 91
optical activity 98
optical component 102, 104
optical fibre 25
optical path 58, 59, 62, 63, 64
optical relay 24, 102
optical tube length 120
optically active material 90
order 59
ordinary wave 90, 92
ozone layer 13

parallel beam 35, 36, 39
paraxial approximation 38, 104, 118
paraxial rays 38, 41, 48
partial polarisation 97
partially polarised light 85
path difference 58, 59
pencil 16
period 5
petrological microscope 98
phase 3, 54
phase change 63, 64
phase difference 59, 73
photoelasticity 98
photographic instrument 102
photon 2
photopic vision 112
pincushion distortion 104
Planck's constant 10
plane mirror 34
plane polarisation 7, 84-87
plane wave 16
plano-concave lens 47
plano-convex lens 47

polarisation 7
circular 87-89, 91-94, 98
components 85
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polarisation
elliptical 89, 94
linear 84, 87, 98
partial 85, 97
plane 84, 87
random 84

polarisation by reflection 97
polarisation by scattering 96
polariser

ideal 86
polarisers

crossed 87
polarising angle 97
polarising axis 86
Polaroid 90
positive lens 40
power 40, 47, 113
principal axis 37, 42, 104, 105
principal maximum 75
principal plane 41, 42, 104, 105
principal point 42, 104, 105
prism 24, 26
propagation constant 4
pupil 108

quantum theory 2, 10
quarter wave plate 94

radar 12
radio waves 12
radius of curvature 47
rainbow 27
random polarisation 7
randomly polarised light 84
ray 16
ray model 1, 69
ray tracing 30, 34, 41-43, 46, 104, 105
Rayleigh 80
Rayleigh criterion 80-81
real image 33, 34, 43, 50
rectilinear propagation 69
reflected ray 19
reflection 18, 90

specular 19
reflection grating 82
reflectivity 18, 23, 97
refracted ray 20, 21
refraction 18, 20-22, 36
refractive index 6, 21, 22, 47, 64, 95, 97, 98
relaxed vision 121
resolution 79, 80, 109, 113, 122
resolving power 79, 113, 122
resultant wave 55
retina 111, 112
retroreflector 24
reversible light path 39
rod 112

saccharimetry 98
scattering 16, 17, 90

polarisation by 96
scotopic vision 112
second focal plane 41
secondary maxima 75
secondary wavelets 71
sensitivity of the eye 8
shadow 69, 70
shutter 110

sign convention 43, 47
simple harmonic wave 3
simple magnifier (see magnifier)
single slit diffraction 73-75
skin cancer 13
Snell's law 22, 37
soap film 62, 63
spectacles 113
spectrograph 27, 82
spectroscope 27, 82
spectrum 10, 26, 82
specular reflection 19-20, 23
speed 5
speed of light 6, 18, 22
spherical aberration 48, 49
spherical wavefront 16
stop (see aperture stop)
sugar 98
sunburn 13
sunglasses 90, 98
superposition 3, 53, 54, 55, 58, 73, 88

telescope 79, 116, 119
thick lens 104
thin film 62
thin film interference 62-67
thin lens 40, 41
total internal reflection 24-25
total magnification 121
tourmaline 90
translucent material 17
transmission 17
transmission grating 82
transparent material 17
transverse wave 2, 5, 84

ultraviolet radiation 13
uniaxial crystal 90, 95
unpolarised light 84
useful magnification 122

vector sum 54
virtual image 30, 33, 34, 43, 50, 117, 120
virtual object 45
visual instrument 102, 116

washed-out fringes 61
water waves 56, 58
wave 2, 15
wave equation 3, 54
wave model 56
wave number 4
wave property 3, 58
wave theory 2
wavefront 15-16, 21, 62, 71
wavelength 4, 6
wavelength in a material 64
wavelength in a medium 21
wavelength in vacuum 6
wavelet 71
wedge 65
white light 6

x rays 13

Young 2
Young's experiment 55, 58, 59, 61, 70, 76, 79


